<
From version < 56.4 >
edited by Xiaoling
on 2022/05/23 11:59
To version < 43.1 >
edited by Edwin Chen
on 2022/05/23 00:08
>
Change comment: Uploaded new attachment "image-20220523000825-7.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,47 +1,27 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220523115324-1.jpeg||height="500" width="500"]]
3 -
4 -
5 -**LHT65N LoRaWAN Temperature & Humidity Sensor Manual**
6 -
7 -
8 -
9 -**Table of Contents:**
10 -
1 +{{box cssClass="floatinginfobox" title="**Contents**"}}
11 11  {{toc/}}
3 +{{/box}}
12 12  
5 += Overview =
13 13  
7 +[[image:LHT65N_10.png||alt="LHT65_Image" height="265" width="265"]]
14 14  
15 -= 1.Introduction =
16 16  
17 -== 1.1 What is LHT65N Temperature & Humidity Sensor ==
10 +The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a(% class="mark" %) **built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% class="mark" %)**Temperature Sensor**(%%)**.**
18 18  
19 -(((
20 -The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor**(%%)**.**
21 -)))
22 -
23 -(((
24 24  The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
25 -)))
26 26  
27 -(((
28 28  LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
29 -)))
30 30  
31 -(((
32 32  LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
33 -)))
34 34  
35 -(((
36 -LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
37 -)))
18 +LHT65N supports (% class="mark" %)Datalog Feature(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
38 38  
39 -(((
40 40  *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
41 -)))
42 42  
43 -== 1.2 Features ==
44 44  
23 +== Features: ==
24 +
45 45  * Wall mountable
46 46  * LoRaWAN v1.0.3 Class A protocol
47 47  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
... ... @@ -54,73 +54,40 @@
54 54  * Tri-color LED to indicate working status
55 55  * Datalog feature
56 56  
57 -== 1.3 Specification ==
37 +== Specification: ==
58 58  
59 -(((
60 60  **Built-in Temperature Sensor:**
61 -)))
62 62  
63 -* (((
64 -Resolution: 0.01 °C
65 -)))
66 -* (((
67 -Accuracy Tolerance : Typ ±0.3 °C
68 -)))
69 -* (((
70 -Long Term Drift: < 0.02 °C/yr
71 -)))
72 -* (((
73 -Operating Range: -40 ~~ 85 °C
74 -)))
41 +* Resolution: 0.01 °C
42 +* Accuracy Tolerance : Typ ±0.3 °C
43 +* Long Term Drift: < 0.02 °C/yr
44 +* Operating Range: -40 ~~ 85 °C
75 75  
76 -(((
77 77  **Built-in Humidity Sensor:**
78 -)))
79 79  
80 -* (((
81 -Resolution: 0.04 %RH
82 -)))
83 -* (((
84 -Accuracy Tolerance : Typ ±3 %RH
85 -)))
86 -* (((
87 -Long Term Drift: < 0.02 °C/yr
88 -)))
89 -* (((
90 -Operating Range: 0 ~~ 96 %RH
91 -)))
48 +* Resolution: 0.04 %RH
49 +* Accuracy Tolerance : Typ ±3 %RH
50 +* Long Term Drift: < 0.02 °C/yr
51 +* Operating Range: 0 ~~ 96 %RH
92 92  
93 -(((
94 94  **External Temperature Sensor:**
95 -)))
96 96  
97 -* (((
98 -Resolution: 0.0625 °C
99 -)))
100 -* (((
101 -±0.5°C accuracy from -10°C to +85°C
102 -)))
103 -* (((
104 -±2°C accuracy from -55°C to +125°C
105 -)))
106 -* (((
107 -Operating Range: -55 °C ~~ 125 °C
108 -)))
55 +* Resolution: 0.0625 °C
56 +* ±0.5°C accuracy from -10°C to +85°C
57 +* ±2°C accuracy from -55°C to +125°C
58 +* Operating Range: -55 °C ~~ 125 °C
109 109  
110 -= 2. Connect LHT65N to IoT Server =
60 += Connect LHT65N to IoT Server =
111 111  
112 -== 2.1 How does LHT65N work? ==
62 +== How does LHT65N work? ==
113 113  
114 -(((
115 115  LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
116 -)))
117 117  
118 -(((
119 119  If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
120 -)))
121 121  
122 -== 2.2 How to Activate LHT65N? ==
123 123  
69 +== How to Activate LHT65N? ==
70 +
124 124  The LHT65N has two working modes:
125 125  
126 126  * **Deep Sleep Mode**: LHT65N doesn’t have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
... ... @@ -130,13 +130,12 @@
130 130  
131 131  [[image:image-20220515123819-1.png||height="379" width="317"]]
132 132  
133 -(% border="1" %)
134 134  |**Behavior on ACT**|**Function**|**Action**
135 135  |**Pressing ACT between 1s < time < 3s**|Test uplink status|If LHT65N is already Joined to the LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has an external sensor connected, blue led will blink once. If LHT65N has no external sensor, red led will blink once.
136 136  |**Pressing ACT for more than 3s**|Active Device|green led will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network. green led will solid turn on for 5 seconds after join in network.
137 137  |**Fast press ACT 5 times**|Deactivate Device|red led will solid on for 5 seconds. This means LHT65N is in Deep Sleep Mode.
138 138  
139 -== 2.3 Example to join LoRaWAN network ==
85 +== Example to join LoRaWAN network ==
140 140  
141 141  (% class="wikigeneratedid" %)
142 142  This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
... ... @@ -147,7 +147,7 @@
147 147  Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
148 148  
149 149  
150 -=== 2.3.1 Step 1: Create Device n TTN ===
96 +=== **Step 1**: Create Device n TTN ===
151 151  
152 152  Create a device in TTN V3 with the OTAA keys from LHT65N.
153 153  
... ... @@ -177,7 +177,7 @@
177 177  [[image:image-20220522233118-7.png]]
178 178  
179 179  
180 -=== 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
126 +=== Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
181 181  
182 182  Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
183 183  
... ... @@ -184,7 +184,7 @@
184 184  [[image:image-20220522233300-8.png]]
185 185  
186 186  
187 -== 2.4 Uplink Payload ==
133 +== Uplink Payload: ==
188 188  
189 189  The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and(% class="mark" %) every 20 minutes(%%) send one uplink by default.
190 190  
... ... @@ -191,7 +191,7 @@
191 191  After each uplink, the (% class="mark" %)BLUE LED(%%) will blink once.
192 192  
193 193  
194 -(% border="1" style="width:572px" %)
140 +(% style="width:572px" %)
195 195  |(% style="width:106px" %)**Size(bytes)**|(% style="width:71px" %)**2**|(% style="width:128px" %)**2**|(% style="width:103px" %)**2**|(% style="width:72px" %)**1**|(% style="width:89px" %)**4**
196 196  |(% style="width:106px" %)**Value**|(% style="width:71px" %)[[BAT>>path:#Battery]]|(% style="width:128px" %)(((
197 197  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -207,7 +207,7 @@
207 207  * The 7th byte (EXT #): defines the external sensor model.
208 208  * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won’t be these four bytes.)
209 209  
210 -=== 2.4.1 Decoder in TTN V3 ===
156 +=== Decoder in TTN V3 ===
211 211  
212 212  When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
213 213  
... ... @@ -218,7 +218,7 @@
218 218  [[image:image-20220522234118-10.png]]
219 219  
220 220  
221 -=== 2.4.2 BAT-Battery Info ===
167 +=== BAT-Battery Info ===
222 222  
223 223  These two bytes of BAT include the battery state and the actually voltage
224 224  
... ... @@ -243,24 +243,27 @@
243 243  * BAT status=(0Xcba4>>14)&0xFF=11(B),very good
244 244  * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV
245 245  
246 -=== 2.4.3 Built-in Temperature ===
192 +=== Built-in Temperature ===
247 247  
248 248  [[image:image-20220522235639-2.png]]
249 249  
250 250  * Temperature:  0x0ABB/100=27.47℃
251 251  
198 +
252 252  [[image:image-20220522235639-3.png]]
253 253  
254 254  * Temperature:  (0xF5C6-65536)/100=-26.18℃
255 255  
256 -=== 2.4.4 Built-in Humidity ===
257 257  
204 +=== Built-in Humidity ===
205 +
258 258  [[image:image-20220522235639-4.png]]
259 259  
260 260  * Humidity:    0x025C/10=60.4%
261 261  
262 -=== 2.4.5 Ext # ===
263 263  
211 +=== Ext # ===
212 +
264 264  Bytes for External Sensor:
265 265  
266 266  (% style="width:624px" %)
... ... @@ -268,16 +268,20 @@
268 268  |(% style="width:139px" %)0x01|(% style="width:484px" %)Sensor E3, Temperature Sensor
269 269  |(% style="width:139px" %)0x09|(% style="width:484px" %)Sensor E3, Temperature Sensor, Datalog Mod
270 270  
271 -=== 2.4.6 Ext value ===
272 272  
273 -==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
221 +=== Ext value ===
274 274  
223 +==== Ext~=1, E3 Temperature Sensor ====
224 +
275 275  [[image:image-20220522235639-5.png]]
276 276  
227 +
277 277  * DS18B20 temp=0x0ADD/100=27.81℃
278 278  
279 279  The last 2 bytes of data are meaningless
280 280  
232 +
233 +
281 281  [[image:image-20220522235639-6.png]]
282 282  
283 283  * External temperature= (0xF54F-65536)/100=-27.37℃
... ... @@ -284,15 +284,16 @@
284 284  
285 285  The last 2 bytes of data are meaningless
286 286  
240 +
287 287  If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
288 288  
289 289  
290 -==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
244 +==== Ext~=9, E3 sensor with Unix Time stamp ====
291 291  
292 292  Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
293 293  
294 294  
295 -(% border="1" style="width:697px" %)
249 +(% style="width:697px" %)
296 296  |(% style="width:96px" %)**Size(bytes)**|(% style="width:164px" %)**2**|(% style="width:104px" %)**2**|(% style="width:106px" %)**2**|(% style="width:108px" %)**1**|(% style="width:116px" %)**4**
297 297  |(% style="width:96px" %)**Value**|(% style="width:164px" %)[[External temperature>>path:#DS18b20_value]]|(% style="width:104px" %)(((
298 298  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -310,9 +310,9 @@
310 310  [[Time Stamp>>path:#Unix_Time_Stamp]]
311 311  )))
312 312  
313 -* **Battery status & **[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]]
267 +* **Battery status & **[[**Built-in Humidity**>>path:#SHT20_Humidity]]
314 314  
315 -(% border="1" style="width:587px" %)
269 +(% style="width:587px" %)
316 316  |Bit(bit)|(% style="width:280px" %)[15:14]|(% style="width:136px" %)[11:0]
317 317  |Value|(% style="width:280px" %)(((
318 318  BAT Status
... ... @@ -330,9 +330,10 @@
330 330  
331 331  )))
332 332  
287 +
333 333  * **Status & Ext Byte**
334 334  
335 -(% border="1" style="width:732px" %)
290 +(% style="width:732px" %)
336 336  |(% style="width:128px" %)**Bits**|(% style="width:102px" %)**7**|(% style="width:145px" %)**6**|(% style="width:117px" %)**5**|(% style="width:147px" %)**4**|(% style="width:90px" %)**[3:0]**
337 337  |(% style="width:128px" %)**Status & Ext**|(% style="width:102px" %)Not Defined|(% style="width:145px" %)Poll Message Flag|(% style="width:117px" %)Sync time OK|(% style="width:147px" %)Unix Time Request|(% style="width:90px" %)(((
338 338  Ext:
... ... @@ -344,214 +344,10 @@
344 344  * Sync time OK: 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
345 345  * Unix Time Request:1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
346 346  
347 -== 2.5 Show data on Datacake ==
348 348  
349 -Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
350 350  
351 -**Step 1**: Be sure that your device is programmed and properly connected to the LoRaWAN network.
304 +== LED Indicator ==
352 352  
353 -**Step 2**: Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
354 -
355 -
356 -Add Datacake:
357 -
358 -[[image:image-20220523000825-7.png||height="262" width="583"]]
359 -
360 -
361 -Select default key as Access Key:
362 -
363 -[[image:image-20220523000825-8.png||height="453" width="406"]]
364 -
365 -
366 -In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
367 -
368 -[[image:image-20220523000825-9.png||height="366" width="392"]]
369 -
370 -
371 -
372 -[[image:image-20220523000825-10.png||height="432" width="762"]]
373 -
374 -
375 -== 2.6 Datalog Feature ==
376 -
377 -This feature is always enabled. When user wants to retrieve the sensor value, he can send a poll command from the IoT platform to ask LHT65N to send the value in the required time slot.
378 -
379 -=== 2.6.1 Unix TimeStamp ===
380 -
381 -LHT65N uses Unix TimeStamp format based on
382 -
383 -[[image:image-20220523001219-11.png||height="97" width="627"]]
384 -
385 -
386 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
387 -
388 -Below is the converter example
389 -
390 -[[image:image-20220523001219-12.png||height="302" width="730"]]
391 -
392 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
393 -
394 -
395 -=== 2.6.2 Set Device Time ===
396 -
397 -There are two ways to set device’s time:
398 -
399 -**~1. Through LoRaWAN MAC Command (Default settings)**
400 -
401 -User need to set SYNCMOD=1 to enable sync time via MAC command.
402 -
403 -Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
404 -
405 -Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn’t support. If server doesn’t support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.
406 -
407 -
408 -**2. Manually Set Time**
409 -
410 -User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
411 -
412 -
413 -=== 2.6.3 Poll sensor value ===
414 -
415 -User can poll sensor value based on timestamps from the server. Below is the downlink command.
416 -
417 -
418 -(% border="1" style="width:454px" %)
419 -|(% style="width:69px" %)1byte|(% style="width:129px" %)4bytes|(% style="width:134px" %)4bytes|(% style="width:119px" %)1byte
420 -|(% style="width:69px" %)31|(% style="width:129px" %)Timestamp start|(% style="width:134px" %)Timestamp end|(% style="width:119px" %)Uplink Interval
421 -
422 -Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
423 -
424 -
425 -For example, downlink command 31 5FC5F350 5FC6 0160 05
426 -
427 -Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00’s data
428 -
429 -Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s.
430 -
431 -
432 -=== 2.6.4 Datalog Uplink payload ===
433 -
434 -The Datalog poll reply uplink will use below payload format.
435 -
436 -
437 -Retrieval data payload
438 -
439 -(% border="1" %)
440 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**4**
441 -|**Value**|[[External sensor data>>path:#Extension_sensor_value]]|(((
442 -[[Built-In>>path:#SHT20_Temperature]]
443 -
444 -[[Temperature>>path:#SHT20_Temperature]]
445 -)))|(((
446 -[[Built-in>>path:#SHT20_Humidity]]
447 -
448 -[[Humidity>>path:#SHT20_Humidity]]
449 -)))|[[Poll message flag & Ext>>path:#Poll_EXT]]|(((
450 -[[Unix Time Stamp>>path:#Unix_Time_Stamp]]
451 -
452 -
453 -)))
454 -
455 -Poll message flag & Ext
456 -
457 -
458 -(% border="1" %)
459 -|**Bits**|**7**|**6**|**5**|**4**|**[3:0]**
460 -|**Status & Ext**|Not Defined|Poll Message Flag|Sync time OK|Unix Time Request|(((
461 -Ext:
462 -
463 -0b(1001)
464 -)))
465 -
466 -Poll Message Flag: 1: This message is a poll message reply.
467 -
468 -* Poll Message Flag is set to 1.
469 -* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
470 -
471 -For example, in US915 band, the max payload for different DR is:
472 -
473 -a)      DR0: max is 11 bytes so one entry of data
474 -
475 -b)      DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
476 -
477 -c)      DR2: total payload includes 11 entries of data
478 -
479 -d)      DR3: total payload includes 22 entries of data.
480 -
481 -If devise doesn’t have any data in the polling time. Device will uplink 11 bytes of 0   
482 -
483 -
484 -**Example:**
485 -
486 -If LHT65N has below data inside Flash:
487 -
488 -Flash Addr   |Unix Time | Ext | BAT voltage|  Value                  
489 -
490 -80196E0 21/1/19 04:27:03 1 3145 sht_temp=22.00 sht_hum=32.6 ds_temp=327.67
491 -
492 -80196F0 21/1/19 04:28:57 1 3145 sht_temp=21.90 sht_hum=33.1 ds_temp=327.67
493 -
494 -8019700 21/1/19 04:30:30 1 3145 sht_temp=21.81 sht_hum=33.4 ds_temp=327.67
495 -
496 -8019710 21/1/19 04:40:30 1 3145 sht_temp=21.65 sht_hum=33.7 ds_temp=327.67
497 -
498 -8019720 21/1/19 04:50:30 1 3147 sht_temp=21.55 sht_hum=34.1 ds_temp=327.67
499 -
500 -8019730 21/1/19 05:00:30 1 3149 sht_temp=21.50 sht_hum=34.1 ds_temp=327.67
501 -
502 -8019740 21/1/19 05:10:30 1 3149 sht_temp=21.43 sht_hum=34.6 ds_temp=327.67
503 -
504 -8019750 21/1/19 05:20:30 1 3151 sht_temp=21.35 sht_hum=34.9 ds_temp=327.67
505 -
506 -
507 -If user sends below downlink command:
508 -
509 -3160065F9760066DA705
510 -
511 - Where : Start time: 60065F97 = time 21/1/19 04:27:03
512 -
513 - Stop time 60066DA7= time 21/1/19 05:27:03
514 -
515 -
516 -LHT65N will uplink this payload.
517 -
518 -[[image:image-20220523001219-13.png||height="421" width="727"]]
519 -
520 -7FFF089801464160065F977FFF088E014B41600660097FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
521 -
522 -Where the first 11 bytes is for the first entry:
523 -
524 -7FFF089801464160065F97
525 -
526 -Ext sensor data=0x7FFF/100=327.67
527 -
528 -Temp=0x0898/100=22.00
529 -
530 -Hum=0x0146/10=32.6
531 -
532 -poll message flag & Ext=0x41,means reply data,Ext=1
533 -
534 -Unix time is 0x60065F97=1611030423s=21/1/19 04:27:03
535 -
536 -
537 -== 2.7 Alarm Mode ==
538 -
539 -Alarm mode feature is added since firmware v1.5. When device is in Alarm mode, it will check the built-in sensor temperature in a short interval. If the temperature exceeds the pre-configure range, it will send an uplink immediately.
540 -
541 -
542 -Note: Alarm mode will increase a little big the power consumption, we recommend extending the normal reading time when enabling this feature.
543 -
544 -
545 -AT Commands for Alarm mode:
546 -
547 -**AT+WMOD=1**: Enable/Disable Alarm Mode. (0:Disable, 1: Enable)
548 -
549 -**AT+CITEMP=1**: The interval to check the temperature for Alarm. (Unit: minute)
550 -
551 -
552 -
553 -== 2.8 LED Indicator ==
554 -
555 555  The LHT65N has a triple color LED which for easy shows different stage.
556 556  
557 557  While pressing ACT button, the LED will work as per LED status with ACT button.
... ... @@ -565,14 +565,17 @@
565 565  
566 566  ----
567 567  
568 -== 2.9 Installation ==
319 +== Installation ==
569 569  
570 -[[image:image-20220516231650-1.png||height="436" width="428"]]
321 +[[image:image-20220516231650-1.png||height="632" width="620"]]
571 571  
572 -= 3. Sensors & Accessories =
573 573  
574 -== 3.1 E3 Temperature Probe ==
575 575  
325 +
326 += Sensors & Accessories =
327 +
328 +== E3 Temperature Probe ==
329 +
576 576  [[image:image-20220515080154-4.png||height="182" width="161"]] [[image:image-20220515080330-5.png||height="201" width="195"]]
577 577  
578 578  
... ... @@ -584,350 +584,36 @@
584 584  * Operating Range: -40 ~~ 125 °C
585 585  * -55°C to 125°C
586 586  * Working voltage 2.35v ~~ 5v
341 +
587 587  
588 -= 4. Configure LHT65N via AT Command or LoRaWAN Downlink =
343 += Battery & How to replace =
589 589  
590 -Use can configure LHT65N via AT Command or LoRaWAN Downlink.
345 +== Battery Type ==
591 591  
592 -* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
593 -* LoRaWAN Downlink instruction for different platforms:
594 -
595 -[[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
596 -
597 -There are two kinds of commands to configure LHT65N, they are:
598 -
599 -* **General Commands**.
600 -
601 -These commands are to configure:
602 -
603 -* General system settings like: uplink interval.
604 -* LoRaWAN protocol & radio-related commands.
605 -
606 -They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki:
607 -
608 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
609 -
610 -* **Commands special design for LHT65N**
611 -
612 -These commands are only valid for LHT65N, as below:
613 -
614 -== 4.1 Set Transmit Interval Time ==
615 -
616 -Feature: Change LoRaWAN End Node Transmit Interval.
617 -
618 -**AT Command: AT+TDC**
619 -
620 -(% border="1" %)
621 -|**Command Example**|**Function**|**Response**
622 -|AT+TDC?|Show current transmit Interval|(((
623 -30000
624 -
625 -OK
626 -
627 -the interval is 30000ms = 30s
628 -)))
629 -|AT+TDC=60000|Set Transmit Interval|(((
630 -OK
631 -
632 -Set transmit interval to 60000ms = 60 seconds
633 -)))
634 -
635 -**Downlink Command: 0x01**
636 -
637 -Format: Command Code (0x01) followed by 3 bytes time value.
638 -
639 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
640 -
641 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
642 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
643 -
644 -== 4.2 Set External Sensor Mode ==
645 -
646 -Feature: Change External Sensor Mode.
647 -
648 -**AT Command: AT+EXT**
649 -
650 -(% border="1" %)
651 -|**Command Example**|**Function**|**Response**
652 -|AT+EXT?|Get current external sensor mode|(((
653 -1
654 -
655 -OK
656 -
657 -External Sensor mode =1
658 -)))
659 -|AT+EXT=1|(% colspan="2" %)Set external sensor mode to 1
660 -|AT+EXT=9|(% colspan="2" %)Set to external DS18B20 with timestamp
661 -
662 -**Downlink Command: 0xA2**
663 -
664 -Total bytes: 2 ~~ 5 bytes
665 -
666 -Example:
667 -
668 -* 0xA201: Set external sensor type to E1
669 -* 0xA209: Same as AT+EXT=9
670 -* 0xA20702003c,Same as AT+SETCNT=60
671 -
672 -== 4.3 Enable/Disable uplink Temperature probe ID ==
673 -
674 -Feature: If PID is enabled, device will send the temperature probe ID on:
675 -
676 -* First Packet after OTAA Join
677 -* Every 24 hours since the first packet.
678 -
679 -PID is default set to disable (0)
680 -
681 -
682 -**AT Command:**
683 -
684 -(% border="1" %)
685 -|**Command Example**|**Function**|**Response**
686 -|AT+PID=1|Enable PID uplink|OK
687 -
688 -**Downlink Command:**
689 -
690 -* 0xA800     à AT+PID=0
691 -* 0xA801     à AT+PID=1
692 -
693 -== 4.4 Set Password ==
694 -
695 -Feature: Set device password, max 9 digits
696 -
697 -**AT Command: AT+PWORD**
698 -
699 -(% border="1" %)
700 -|**Command Example**|**Function**|**Response**
701 -|AT+PWORD=?|Show password|(((
702 -123456
703 -
704 -
705 -OK
706 -)))
707 -|AT+PWORD=999999|Set password|OK
708 -
709 -**Downlink Command:**
710 -
711 -No downlink command for this feature.
712 -
713 -== 4.5 Quit AT Command ==
714 -
715 -Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
716 -
717 -**AT Command: AT+DISAT**
718 -
719 -(% border="1" %)
720 -|**Command Example**|**Function**|**Response**
721 -|AT+DISAT|Quit AT Commands mode|OK
722 -
723 -**Downlink Command:**
724 -
725 -No downlink command for this feature.
726 -
727 -
728 -== 4.6 Set to sleep mode ==
729 -
730 -Feature: Set device to sleep mode
731 -
732 -**AT Command: AT+SLEEP**
733 -
734 -(% border="1" %)
735 -| | |
736 -|**Command Example**|**Function**|**Response**
737 -|AT+SLEEP|Set to sleep mode|(((
738 -Clear all stored sensor data…
739 -
740 -OK
741 -)))
742 -
743 -**Downlink Command:**
744 -
745 -* There is no downlink command to set to Sleep mode.
746 -
747 -== 4.7 Set system time ==
748 -
749 -Feature: Set system time, unix format. [[See here for format detail.>>path:#TimeStamp]]
750 -
751 -**AT Command:**
752 -
753 -(% border="1" %)
754 -|**Command Example**|**Function**
755 -|AT+TIMESTAMP=1611104352|(((
756 -OK
757 -
758 -Set System time to 2021-01-20 00:59:12
759 -)))
760 -
761 -**Downlink Command:**
762 -
763 -0x306007806000 ~/~/ Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
764 -
765 -== 4.8 Set Time Sync Mode ==
766 -
767 -Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
768 -
769 -SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
770 -
771 -
772 -**AT Command:**
773 -
774 -|**Command Example**|**Function**
775 -|AT+SYNCMOD=1|Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
776 -
777 -**Downlink Command:**
778 -
779 -0x28 01 ~/~/ Same As AT+SYNCMOD=1
780 -
781 -0x28 00 ~/~/ Same As AT+SYNCMOD=0
782 -
783 -== 4.9 Set Time Sync Interval ==
784 -
785 -Feature: Define System time sync interval. SYNCTDC default value: 10 days.
786 -
787 -**AT Command:**
788 -
789 -(% border="1" %)
790 -|**Command Example**|**Function**
791 -|AT+SYNCTDC=0x0A|Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
792 -
793 -**Downlink Command:**
794 -
795 -0x29 0A ~/~/ Same as AT+SYNCTDC=0x0A
796 -
797 -== 4.10 Print data entries base on page. ==
798 -
799 -Feature: Print the sector data from start page to stop page (max is 416 pages).
800 -
801 -**AT Command: AT+PDTA**
802 -
803 -(% border="1" %)
804 -|**Command Example**|**Response**
805 -|(((
806 -AT+PDTA=1,3
807 -
808 -
809 -
810 -Print page 1 to 3
811 -)))|(((
812 -8019500 19/6/26 16:48 1 2992 sht_temp=28.21 sht_hum=71.5 ds_temp=27.31
813 -
814 -8019510 19/6/26 16:53 1 2994 sht_temp=27.64 sht_hum=69.3 ds_temp=26.93
815 -
816 -8019520 19/6/26 16:58 1 2996 sht_temp=28.39 sht_hum=72.0 ds_temp=27.06
817 -
818 -8019530 19/6/26 17:03 1 2996 sht_temp=27.97 sht_hum=70.4 ds_temp=27.12
819 -
820 -8019540 19/6/26 17:08 1 2996 sht_temp=27.80 sht_hum=72.9 ds_temp=27.06
821 -
822 -8019550 19/6/26 17:13 1 2998 sht_temp=27.30 sht_hum=72.4 ds_temp=26.68
823 -
824 -8019560 19/6/26 17:22 1 2992 sht_temp=26.27 sht_hum=62.3 ds_temp=26.56
825 -
826 -8019570
827 -
828 -8019580
829 -
830 -8019590
831 -
832 -80195A0
833 -
834 -80195B0
835 -
836 -80195C0
837 -
838 -80195D0
839 -
840 -80195E0
841 -
842 -80195F0
843 -
844 -
845 -OK
846 -)))
847 -
848 -**Downlink Command:**
849 -
850 -No downlink commands for feature
851 -
852 -== 4.11 Print last few data entries. ==
853 -
854 -Feature: Print the last few data entries
855 -
856 -**AT Command: AT+PLDTA**
857 -
858 -(% border="1" %)
859 -|**Command Example**|**Response**
860 -|(((
861 -AT+PLDTA=5
862 -
863 -
864 -
865 -Print last 5 entries
866 -)))|(((
867 -Stop Tx and RTP events when read sensor data
868 -
869 -1 19/6/26 13:59 1 3005 sht_temp=27.09 sht_hum=79.5 ds_temp=26.75
870 -
871 -2 19/6/26 14:04 1 3007 sht_temp=26.65 sht_hum=74.8 ds_temp=26.43
872 -
873 -3 19/6/26 14:09 1 3007 sht_temp=26.91 sht_hum=77.9 ds_temp=26.56
874 -
875 -4 19/6/26 14:15 1 3007 sht_temp=26.93 sht_hum=76.7 ds_temp=26.75
876 -
877 -5 19/6/26 14:20 1 3007 sht_temp=26.78 sht_hum=76.6 ds_temp=26.43
878 -
879 -Start Tx and RTP events
880 -
881 -OK
882 -)))
883 -
884 -**Downlink Command:**
885 -
886 -No downlink commands for feature
887 -
888 -== 4.12 Clear Flash Record ==
889 -
890 -Feature: Clear flash storage for data log feature.
891 -
892 -**AT Command: AT+CLRDTA**
893 -
894 -(% border="1" %)
895 -|**Command Example**|**Function**|**Response**
896 -|AT+CLRDTA|Clear date record|(((
897 -Clear all stored sensor data…
898 -
899 -OK
900 -)))
901 -
902 -**Downlink Command: 0xA3**
903 -
904 -* Example: 0xA301 ~/~/Same as AT+CLRDTA
905 -
906 -= 5. Battery & How to replace =
907 -
908 -== 5.1 Battery Type ==
909 -
910 910  LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
911 911  
912 912  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
913 913  [[image:image-20220515075034-1.png||height="208" width="644"]]
914 914  
352 +
915 915  The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
916 916  
917 917  
918 -== 5.2 Replace Battery ==
356 +== Replace Battery ==
919 919  
920 920  LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
921 921  
922 922  [[image:image-20220515075440-2.png||height="338" width="272"]][[image:image-20220515075625-3.png||height="193" width="257"]]
923 923  
924 -== 5.3 Battery Life Analyze ==
925 925  
363 +== Battery Life Analyze ==
364 +
926 926  Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
927 927  https:~/~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf
928 928  
929 -= 6. Order Info =
930 930  
369 += Order Info =
370 +
931 931  Part Number: (% class="mark" %)**LHT65N-XX**
932 932  
933 933  **XX**: The default frequency band
... ... @@ -945,7 +945,7 @@
945 945  
946 946  * **E3**: External Temperature Probe
947 947  
948 -= 7. Packing Info =
388 += Packing Info =
949 949  
950 950  **Package Includes**:
951 951  
... ... @@ -960,10 +960,10 @@
960 960  * Package Size / pcs : 14.5 x 8 x 5 cm
961 961  * Weight / pcs : 170g
962 962  
963 -= 8. FCC Warning =
403 += FCC Warning =
964 964  
965 965  This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
966 966  
967 -(1) This device may not cause harmful interference
407 +(1) This device may not cause harmful interference, and
968 968  
969 -(2) this device must accept any interference received, including interference that may cause undesired operation.
409 +(2) this device must accept any interference received, including interference that may cause undesired operation
image-20220523000825-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -59.3 KB
Content
image-20220523000825-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -27.1 KB
Content
image-20220523000825-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -60.7 KB
Content
image-20220523001219-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -18.8 KB
Content
image-20220523001219-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -86.2 KB
Content
image-20220523001219-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.6 KB
Content
image-20220523111447-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -910.1 KB
Content
image-20220523112300-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.5 KB
Content
image-20220523115324-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -910.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0