Changes for page LHT52 - LoRaWAN Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/30 14:27
Change comment:
Uploaded new attachment "image-20220523000825-9.png", version {1}
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 7 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Edwin - Content
-
... ... @@ -1,47 +1,27 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20220523115324-1.jpeg||height="500" width="500"]] 3 - 4 - 5 -**LHT65N LoRaWAN Temperature & Humidity Sensor Manual** 6 - 7 - 8 - 9 -**Table of Contents:** 10 - 1 +{{box cssClass="floatinginfobox" title="**Contents**"}} 11 11 {{toc/}} 3 +{{/box}} 12 12 5 += Overview = 13 13 7 +[[image:LHT65N_10.png||alt="LHT65_Image" height="265" width="265"]] 14 14 15 -= 1.Introduction = 16 16 17 - == 1.1 WhatisLHT65N Temperature & Humidity Sensor ==10 +The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a(% class="mark" %) **built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% class="mark" %)**Temperature Sensor**(%%)**.** 18 18 19 -((( 20 -The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor**(%%)**.** 21 -))) 22 - 23 -((( 24 24 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on. 25 -))) 26 26 27 -((( 28 28 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*. 29 -))) 30 30 31 -((( 32 32 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway. 33 -))) 34 34 35 -((( 36 -LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading. 37 -))) 18 +LHT65N supports (% class="mark" %)Datalog Feature(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading. 38 38 39 -((( 40 40 *The actual battery life depends on how often to send data, please see the battery analyzer chapter. 41 -))) 42 42 43 -== 1.2 Features == 44 44 23 +== Features: == 24 + 45 45 * Wall mountable 46 46 * LoRaWAN v1.0.3 Class A protocol 47 47 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915 ... ... @@ -54,62 +54,32 @@ 54 54 * Tri-color LED to indicate working status 55 55 * Datalog feature 56 56 57 -== 1.3Specification ==37 +== Specification: == 58 58 59 -((( 60 60 **Built-in Temperature Sensor:** 61 -))) 62 62 63 -* ((( 64 -Resolution: 0.01 °C 65 -))) 66 -* ((( 67 -Accuracy Tolerance : Typ ±0.3 °C 68 -))) 69 -* ((( 70 -Long Term Drift: < 0.02 °C/yr 71 -))) 72 -* ((( 73 -Operating Range: -40 ~~ 85 °C 74 -))) 41 +* Resolution: 0.01 °C 42 +* Accuracy Tolerance : Typ ±0.3 °C 43 +* Long Term Drift: < 0.02 °C/yr 44 +* Operating Range: -40 ~~ 85 °C 75 75 76 -((( 77 77 **Built-in Humidity Sensor:** 78 -))) 79 79 80 -* ((( 81 -Resolution: 0.04 %RH 82 -))) 83 -* ((( 84 -Accuracy Tolerance : Typ ±3 %RH 85 -))) 86 -* ((( 87 -Long Term Drift: < 0.02 °C/yr 88 -))) 89 -* ((( 90 -Operating Range: 0 ~~ 96 %RH 91 -))) 48 +* Resolution: 0.04 %RH 49 +* Accuracy Tolerance : Typ ±3 %RH 50 +* Long Term Drift: < 0.02 °C/yr 51 +* Operating Range: 0 ~~ 96 %RH 92 92 93 -((( 94 94 **External Temperature Sensor:** 95 -))) 96 96 97 -* ((( 98 -Resolution: 0.0625 °C 99 -))) 100 -* ((( 101 -±0.5°C accuracy from -10°C to +85°C 102 -))) 103 -* ((( 104 -±2°C accuracy from -55°C to +125°C 105 -))) 106 -* ((( 107 -Operating Range: -55 °C ~~ 125 °C 108 -))) 55 +* Resolution: 0.0625 °C 56 +* ±0.5°C accuracy from -10°C to +85°C 57 +* ±2°C accuracy from -55°C to +125°C 58 +* Operating Range: -55 °C ~~ 125 °C 109 109 110 -= 2.Connect LHT65N to IoT Server =60 += Connect LHT65N to IoT Server = 111 111 112 -== 2.1How does LHT65N work? ==62 +== How does LHT65N work? == 113 113 114 114 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N. 115 115 ... ... @@ -116,7 +116,7 @@ 116 116 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes. 117 117 118 118 119 -== 2.2How to Activate LHT65N? ==69 +== How to Activate LHT65N? == 120 120 121 121 The LHT65N has two working modes: 122 122 ... ... @@ -127,13 +127,12 @@ 127 127 128 128 [[image:image-20220515123819-1.png||height="379" width="317"]] 129 129 130 -(% border="1" %) 131 131 |**Behavior on ACT**|**Function**|**Action** 132 132 |**Pressing ACT between 1s < time < 3s**|Test uplink status|If LHT65N is already Joined to the LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has an external sensor connected, blue led will blink once. If LHT65N has no external sensor, red led will blink once. 133 133 |**Pressing ACT for more than 3s**|Active Device|green led will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network. green led will solid turn on for 5 seconds after join in network. 134 134 |**Fast press ACT 5 times**|Deactivate Device|red led will solid on for 5 seconds. This means LHT65N is in Deep Sleep Mode. 135 135 136 -== 2.3Example to join LoRaWAN network ==85 +== Example to join LoRaWAN network == 137 137 138 138 (% class="wikigeneratedid" %) 139 139 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure. ... ... @@ -144,7 +144,7 @@ 144 144 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3: 145 145 146 146 147 -=== 2.3.1Step 1: Create Device n TTN ===96 +=== **Step 1**: Create Device n TTN === 148 148 149 149 Create a device in TTN V3 with the OTAA keys from LHT65N. 150 150 ... ... @@ -174,7 +174,7 @@ 174 174 [[image:image-20220522233118-7.png]] 175 175 176 176 177 -=== 2.3.2Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===126 +=== Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. === 178 178 179 179 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel. 180 180 ... ... @@ -181,7 +181,7 @@ 181 181 [[image:image-20220522233300-8.png]] 182 182 183 183 184 -== 2.4Uplink Payload ==133 +== Uplink Payload: == 185 185 186 186 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and(% class="mark" %) every 20 minutes(%%) send one uplink by default. 187 187 ... ... @@ -188,7 +188,7 @@ 188 188 After each uplink, the (% class="mark" %)BLUE LED(%%) will blink once. 189 189 190 190 191 -(% border="1"style="width:572px" %)140 +(% style="width:572px" %) 192 192 |(% style="width:106px" %)**Size(bytes)**|(% style="width:71px" %)**2**|(% style="width:128px" %)**2**|(% style="width:103px" %)**2**|(% style="width:72px" %)**1**|(% style="width:89px" %)**4** 193 193 |(% style="width:106px" %)**Value**|(% style="width:71px" %)[[BAT>>path:#Battery]]|(% style="width:128px" %)((( 194 194 [[Built-In>>path:#SHT20_Temperature]] ... ... @@ -204,7 +204,7 @@ 204 204 * The 7th byte (EXT #): defines the external sensor model. 205 205 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won’t be these four bytes.) 206 206 207 -=== 2.4.1Decoder in TTN V3 ===156 +=== Decoder in TTN V3 === 208 208 209 209 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading. 210 210 ... ... @@ -215,7 +215,7 @@ 215 215 [[image:image-20220522234118-10.png]] 216 216 217 217 218 -=== 2.4.2BAT-Battery Info ===167 +=== BAT-Battery Info === 219 219 220 220 These two bytes of BAT include the battery state and the actually voltage 221 221 ... ... @@ -240,24 +240,27 @@ 240 240 * BAT status=(0Xcba4>>14)&0xFF=11(B),very good 241 241 * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV 242 242 243 -=== 2.4.3Built-in Temperature ===192 +=== Built-in Temperature === 244 244 245 245 [[image:image-20220522235639-2.png]] 246 246 247 247 * Temperature: 0x0ABB/100=27.47℃ 248 248 198 + 249 249 [[image:image-20220522235639-3.png]] 250 250 251 251 * Temperature: (0xF5C6-65536)/100=-26.18℃ 252 252 253 -=== 2.4.4 Built-in Humidity === 254 254 204 +=== Built-in Humidity === 205 + 255 255 [[image:image-20220522235639-4.png]] 256 256 257 257 * Humidity: 0x025C/10=60.4% 258 258 259 -=== 2.4.5 Ext # === 260 260 211 +=== Ext # === 212 + 261 261 Bytes for External Sensor: 262 262 263 263 (% style="width:624px" %) ... ... @@ -265,16 +265,20 @@ 265 265 |(% style="width:139px" %)0x01|(% style="width:484px" %)Sensor E3, Temperature Sensor 266 266 |(% style="width:139px" %)0x09|(% style="width:484px" %)Sensor E3, Temperature Sensor, Datalog Mod 267 267 268 -=== 2.4.6 Ext value === 269 269 270 -=== =2.4.6.1Ext~=1,E3 TemperatureSensor====221 +=== Ext value === 271 271 223 +==== Ext~=1, E3 Temperature Sensor ==== 224 + 272 272 [[image:image-20220522235639-5.png]] 273 273 227 + 274 274 * DS18B20 temp=0x0ADD/100=27.81℃ 275 275 276 276 The last 2 bytes of data are meaningless 277 277 232 + 233 + 278 278 [[image:image-20220522235639-6.png]] 279 279 280 280 * External temperature= (0xF54F-65536)/100=-27.37℃ ... ... @@ -281,15 +281,16 @@ 281 281 282 282 The last 2 bytes of data are meaningless 283 283 240 + 284 284 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃ 285 285 286 286 287 -==== 2.4.6.2Ext~=9, E3 sensor with Unix Timestamp ====244 +==== Ext~=9, E3 sensor with Unix Time stamp ==== 288 288 289 289 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below: 290 290 291 291 292 -(% border="1"style="width:697px" %)249 +(% style="width:697px" %) 293 293 |(% style="width:96px" %)**Size(bytes)**|(% style="width:164px" %)**2**|(% style="width:104px" %)**2**|(% style="width:106px" %)**2**|(% style="width:108px" %)**1**|(% style="width:116px" %)**4** 294 294 |(% style="width:96px" %)**Value**|(% style="width:164px" %)[[External temperature>>path:#DS18b20_value]]|(% style="width:104px" %)((( 295 295 [[Built-In>>path:#SHT20_Temperature]] ... ... @@ -307,9 +307,9 @@ 307 307 [[Time Stamp>>path:#Unix_Time_Stamp]] 308 308 ))) 309 309 310 -* **Battery status & **[[ (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]]267 +* **Battery status & **[[**Built-in Humidity**>>path:#SHT20_Humidity]] 311 311 312 -(% border="1"style="width:587px" %)269 +(% style="width:587px" %) 313 313 |Bit(bit)|(% style="width:280px" %)[15:14]|(% style="width:136px" %)[11:0] 314 314 |Value|(% style="width:280px" %)((( 315 315 BAT Status ... ... @@ -327,9 +327,10 @@ 327 327 328 328 ))) 329 329 287 + 330 330 * **Status & Ext Byte** 331 331 332 -(% border="1"style="width:732px" %)290 +(% style="width:732px" %) 333 333 |(% style="width:128px" %)**Bits**|(% style="width:102px" %)**7**|(% style="width:145px" %)**6**|(% style="width:117px" %)**5**|(% style="width:147px" %)**4**|(% style="width:90px" %)**[3:0]** 334 334 |(% style="width:128px" %)**Status & Ext**|(% style="width:102px" %)Not Defined|(% style="width:145px" %)Poll Message Flag|(% style="width:117px" %)Sync time OK|(% style="width:147px" %)Unix Time Request|(% style="width:90px" %)((( 335 335 Ext: ... ... @@ -341,214 +341,10 @@ 341 341 * Sync time OK: 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server. 342 342 * Unix Time Request:1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this) 343 343 344 -== 2.5 Show data on Datacake == 345 345 346 -Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps: 347 347 348 - **Step1**:Be sure that yourdevice is programmed and properly connected tothe LoRaWAN network.304 +== LED Indicator == 349 349 350 -**Step 2**: Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations. 351 - 352 - 353 -Add Datacake: 354 - 355 -[[image:image-20220523000825-7.png||height="262" width="583"]] 356 - 357 - 358 -Select default key as Access Key: 359 - 360 -[[image:image-20220523000825-8.png||height="453" width="406"]] 361 - 362 - 363 -In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device. 364 - 365 -[[image:image-20220523000825-9.png||height="366" width="392"]] 366 - 367 - 368 - 369 -[[image:image-20220523000825-10.png||height="432" width="762"]] 370 - 371 - 372 -== 2.6 Datalog Feature == 373 - 374 -This feature is always enabled. When user wants to retrieve the sensor value, he can send a poll command from the IoT platform to ask LHT65N to send the value in the required time slot. 375 - 376 -=== 2.6.1 Unix TimeStamp === 377 - 378 -LHT65N uses Unix TimeStamp format based on 379 - 380 -[[image:image-20220523001219-11.png||height="97" width="627"]] 381 - 382 - 383 -User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 384 - 385 -Below is the converter example 386 - 387 -[[image:image-20220523001219-12.png||height="302" width="730"]] 388 - 389 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 390 - 391 - 392 -=== 2.6.2 Set Device Time === 393 - 394 -There are two ways to set device’s time: 395 - 396 -**~1. Through LoRaWAN MAC Command (Default settings)** 397 - 398 -User need to set SYNCMOD=1 to enable sync time via MAC command. 399 - 400 -Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 401 - 402 -Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn’t support. If server doesn’t support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1. 403 - 404 - 405 -**2. Manually Set Time** 406 - 407 -User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server. 408 - 409 - 410 -=== 2.6.3 Poll sensor value === 411 - 412 -User can poll sensor value based on timestamps from the server. Below is the downlink command. 413 - 414 - 415 -(% border="1" style="width:454px" %) 416 -|(% style="width:69px" %)1byte|(% style="width:129px" %)4bytes|(% style="width:134px" %)4bytes|(% style="width:119px" %)1byte 417 -|(% style="width:69px" %)31|(% style="width:129px" %)Timestamp start|(% style="width:134px" %)Timestamp end|(% style="width:119px" %)Uplink Interval 418 - 419 -Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval. 420 - 421 - 422 -For example, downlink command 31 5FC5F350 5FC6 0160 05 423 - 424 -Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00’s data 425 - 426 -Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s. 427 - 428 - 429 -=== 2.6.4 Datalog Uplink payload === 430 - 431 -The Datalog poll reply uplink will use below payload format. 432 - 433 - 434 -Retrieval data payload 435 - 436 -(% border="1" %) 437 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**4** 438 -|**Value**|[[External sensor data>>path:#Extension_sensor_value]]|((( 439 -[[Built-In>>path:#SHT20_Temperature]] 440 - 441 -[[Temperature>>path:#SHT20_Temperature]] 442 -)))|((( 443 -[[Built-in>>path:#SHT20_Humidity]] 444 - 445 -[[Humidity>>path:#SHT20_Humidity]] 446 -)))|[[Poll message flag & Ext>>path:#Poll_EXT]]|((( 447 -[[Unix Time Stamp>>path:#Unix_Time_Stamp]] 448 - 449 - 450 -))) 451 - 452 -Poll message flag & Ext 453 - 454 - 455 -(% border="1" %) 456 -|**Bits**|**7**|**6**|**5**|**4**|**[3:0]** 457 -|**Status & Ext**|Not Defined|Poll Message Flag|Sync time OK|Unix Time Request|((( 458 -Ext: 459 - 460 -0b(1001) 461 -))) 462 - 463 -Poll Message Flag: 1: This message is a poll message reply. 464 - 465 -* Poll Message Flag is set to 1. 466 -* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands. 467 - 468 -For example, in US915 band, the max payload for different DR is: 469 - 470 -a) DR0: max is 11 bytes so one entry of data 471 - 472 -b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 473 - 474 -c) DR2: total payload includes 11 entries of data 475 - 476 -d) DR3: total payload includes 22 entries of data. 477 - 478 -If devise doesn’t have any data in the polling time. Device will uplink 11 bytes of 0 479 - 480 - 481 -**Example:** 482 - 483 -If LHT65N has below data inside Flash: 484 - 485 -Flash Addr |Unix Time | Ext | BAT voltage| Value 486 - 487 -80196E0 21/1/19 04:27:03 1 3145 sht_temp=22.00 sht_hum=32.6 ds_temp=327.67 488 - 489 -80196F0 21/1/19 04:28:57 1 3145 sht_temp=21.90 sht_hum=33.1 ds_temp=327.67 490 - 491 -8019700 21/1/19 04:30:30 1 3145 sht_temp=21.81 sht_hum=33.4 ds_temp=327.67 492 - 493 -8019710 21/1/19 04:40:30 1 3145 sht_temp=21.65 sht_hum=33.7 ds_temp=327.67 494 - 495 -8019720 21/1/19 04:50:30 1 3147 sht_temp=21.55 sht_hum=34.1 ds_temp=327.67 496 - 497 -8019730 21/1/19 05:00:30 1 3149 sht_temp=21.50 sht_hum=34.1 ds_temp=327.67 498 - 499 -8019740 21/1/19 05:10:30 1 3149 sht_temp=21.43 sht_hum=34.6 ds_temp=327.67 500 - 501 -8019750 21/1/19 05:20:30 1 3151 sht_temp=21.35 sht_hum=34.9 ds_temp=327.67 502 - 503 - 504 -If user sends below downlink command: 505 - 506 -3160065F9760066DA705 507 - 508 - Where : Start time: 60065F97 = time 21/1/19 04:27:03 509 - 510 - Stop time 60066DA7= time 21/1/19 05:27:03 511 - 512 - 513 -LHT65N will uplink this payload. 514 - 515 -[[image:image-20220523001219-13.png||height="421" width="727"]] 516 - 517 -7FFF089801464160065F977FFF088E014B41600660097FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E 518 - 519 -Where the first 11 bytes is for the first entry: 520 - 521 -7FFF089801464160065F97 522 - 523 -Ext sensor data=0x7FFF/100=327.67 524 - 525 -Temp=0x0898/100=22.00 526 - 527 -Hum=0x0146/10=32.6 528 - 529 -poll message flag & Ext=0x41,means reply data,Ext=1 530 - 531 -Unix time is 0x60065F97=1611030423s=21/1/19 04:27:03 532 - 533 - 534 -== 2.7 Alarm Mode == 535 - 536 -Alarm mode feature is added since firmware v1.5. When device is in Alarm mode, it will check the built-in sensor temperature in a short interval. If the temperature exceeds the pre-configure range, it will send an uplink immediately. 537 - 538 - 539 -Note: Alarm mode will increase a little big the power consumption, we recommend extending the normal reading time when enabling this feature. 540 - 541 - 542 -AT Commands for Alarm mode: 543 - 544 -**AT+WMOD=1**: Enable/Disable Alarm Mode. (0:Disable, 1: Enable) 545 - 546 -**AT+CITEMP=1**: The interval to check the temperature for Alarm. (Unit: minute) 547 - 548 - 549 - 550 -== 2.8 LED Indicator == 551 - 552 552 The LHT65N has a triple color LED which for easy shows different stage. 553 553 554 554 While pressing ACT button, the LED will work as per LED status with ACT button. ... ... @@ -562,14 +562,17 @@ 562 562 563 563 ---- 564 564 565 -== 2.9Installation ==319 +== Installation == 566 566 567 -[[image:image-20220516231650-1.png||height=" 436" width="428"]]321 +[[image:image-20220516231650-1.png||height="632" width="620"]] 568 568 569 -= 3. Sensors & Accessories = 570 570 571 -== 3.1 E3 Temperature Probe == 572 572 325 + 326 += Sensors & Accessories = 327 + 328 +== E3 Temperature Probe == 329 + 573 573 [[image:image-20220515080154-4.png||height="182" width="161"]] [[image:image-20220515080330-5.png||height="201" width="195"]] 574 574 575 575 ... ... @@ -581,350 +581,36 @@ 581 581 * Operating Range: -40 ~~ 125 °C 582 582 * -55°C to 125°C 583 583 * Working voltage 2.35v ~~ 5v 341 + 584 584 585 -= 4. ConfigureLHT65Nvia AT CommandorLoRaWANDownlink=343 += Battery & How to replace = 586 586 587 - Usecan configureLHT65Nvia AT Command or LoRaWAN Downlink.345 +== Battery Type == 588 588 589 -* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]]. 590 -* LoRaWAN Downlink instruction for different platforms: 591 - 592 -[[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]] 593 - 594 -There are two kinds of commands to configure LHT65N, they are: 595 - 596 -* **General Commands**. 597 - 598 -These commands are to configure: 599 - 600 -* General system settings like: uplink interval. 601 -* LoRaWAN protocol & radio-related commands. 602 - 603 -They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: 604 - 605 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]] 606 - 607 -* **Commands special design for LHT65N** 608 - 609 -These commands are only valid for LHT65N, as below: 610 - 611 -== 4.1 Set Transmit Interval Time == 612 - 613 -Feature: Change LoRaWAN End Node Transmit Interval. 614 - 615 -**AT Command: AT+TDC** 616 - 617 -(% border="1" %) 618 -|**Command Example**|**Function**|**Response** 619 -|AT+TDC?|Show current transmit Interval|((( 620 -30000 621 - 622 -OK 623 - 624 -the interval is 30000ms = 30s 625 -))) 626 -|AT+TDC=60000|Set Transmit Interval|((( 627 -OK 628 - 629 -Set transmit interval to 60000ms = 60 seconds 630 -))) 631 - 632 -**Downlink Command: 0x01** 633 - 634 -Format: Command Code (0x01) followed by 3 bytes time value. 635 - 636 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 637 - 638 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 639 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 640 - 641 -== 4.2 Set External Sensor Mode == 642 - 643 -Feature: Change External Sensor Mode. 644 - 645 -**AT Command: AT+EXT** 646 - 647 -(% border="1" %) 648 -|**Command Example**|**Function**|**Response** 649 -|AT+EXT?|Get current external sensor mode|((( 650 -1 651 - 652 -OK 653 - 654 -External Sensor mode =1 655 -))) 656 -|AT+EXT=1|(% colspan="2" %)Set external sensor mode to 1 657 -|AT+EXT=9|(% colspan="2" %)Set to external DS18B20 with timestamp 658 - 659 -**Downlink Command: 0xA2** 660 - 661 -Total bytes: 2 ~~ 5 bytes 662 - 663 -Example: 664 - 665 -* 0xA201: Set external sensor type to E1 666 -* 0xA209: Same as AT+EXT=9 667 -* 0xA20702003c,Same as AT+SETCNT=60 668 - 669 -== 4.3 Enable/Disable uplink Temperature probe ID == 670 - 671 -Feature: If PID is enabled, device will send the temperature probe ID on: 672 - 673 -* First Packet after OTAA Join 674 -* Every 24 hours since the first packet. 675 - 676 -PID is default set to disable (0) 677 - 678 - 679 -**AT Command:** 680 - 681 -(% border="1" %) 682 -|**Command Example**|**Function**|**Response** 683 -|AT+PID=1|Enable PID uplink|OK 684 - 685 -**Downlink Command:** 686 - 687 -* 0xA800 à AT+PID=0 688 -* 0xA801 à AT+PID=1 689 - 690 -== 4.4 Set Password == 691 - 692 -Feature: Set device password, max 9 digits 693 - 694 -**AT Command: AT+PWORD** 695 - 696 -(% border="1" %) 697 -|**Command Example**|**Function**|**Response** 698 -|AT+PWORD=?|Show password|((( 699 -123456 700 - 701 - 702 -OK 703 -))) 704 -|AT+PWORD=999999|Set password|OK 705 - 706 -**Downlink Command:** 707 - 708 -No downlink command for this feature. 709 - 710 -== 4.5 Quit AT Command == 711 - 712 -Feature: Quit AT Command mode, so user needs to input password again before use AT Commands. 713 - 714 -**AT Command: AT+DISAT** 715 - 716 -(% border="1" %) 717 -|**Command Example**|**Function**|**Response** 718 -|AT+DISAT|Quit AT Commands mode|OK 719 - 720 -**Downlink Command:** 721 - 722 -No downlink command for this feature. 723 - 724 - 725 -== 4.6 Set to sleep mode == 726 - 727 -Feature: Set device to sleep mode 728 - 729 -**AT Command: AT+SLEEP** 730 - 731 -(% border="1" %) 732 -| | | 733 -|**Command Example**|**Function**|**Response** 734 -|AT+SLEEP|Set to sleep mode|((( 735 -Clear all stored sensor data… 736 - 737 -OK 738 -))) 739 - 740 -**Downlink Command:** 741 - 742 -* There is no downlink command to set to Sleep mode. 743 - 744 -== 4.7 Set system time == 745 - 746 -Feature: Set system time, unix format. [[See here for format detail.>>path:#TimeStamp]] 747 - 748 -**AT Command:** 749 - 750 -(% border="1" %) 751 -|**Command Example**|**Function** 752 -|AT+TIMESTAMP=1611104352|((( 753 -OK 754 - 755 -Set System time to 2021-01-20 00:59:12 756 -))) 757 - 758 -**Downlink Command:** 759 - 760 -0x306007806000 ~/~/ Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352 761 - 762 -== 4.8 Set Time Sync Mode == 763 - 764 -Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command. 765 - 766 -SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0. 767 - 768 - 769 -**AT Command:** 770 - 771 -|**Command Example**|**Function** 772 -|AT+SYNCMOD=1|Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq) 773 - 774 -**Downlink Command:** 775 - 776 -0x28 01 ~/~/ Same As AT+SYNCMOD=1 777 - 778 -0x28 00 ~/~/ Same As AT+SYNCMOD=0 779 - 780 -== 4.9 Set Time Sync Interval == 781 - 782 -Feature: Define System time sync interval. SYNCTDC default value: 10 days. 783 - 784 -**AT Command:** 785 - 786 -(% border="1" %) 787 -|**Command Example**|**Function** 788 -|AT+SYNCTDC=0x0A|Set SYNCTDC to 10 (0x0A), so the sync time is 10 days. 789 - 790 -**Downlink Command:** 791 - 792 -0x29 0A ~/~/ Same as AT+SYNCTDC=0x0A 793 - 794 -== 4.10 Print data entries base on page. == 795 - 796 -Feature: Print the sector data from start page to stop page (max is 416 pages). 797 - 798 -**AT Command: AT+PDTA** 799 - 800 -(% border="1" %) 801 -|**Command Example**|**Response** 802 -|((( 803 -AT+PDTA=1,3 804 - 805 - 806 - 807 -Print page 1 to 3 808 -)))|((( 809 -8019500 19/6/26 16:48 1 2992 sht_temp=28.21 sht_hum=71.5 ds_temp=27.31 810 - 811 -8019510 19/6/26 16:53 1 2994 sht_temp=27.64 sht_hum=69.3 ds_temp=26.93 812 - 813 -8019520 19/6/26 16:58 1 2996 sht_temp=28.39 sht_hum=72.0 ds_temp=27.06 814 - 815 -8019530 19/6/26 17:03 1 2996 sht_temp=27.97 sht_hum=70.4 ds_temp=27.12 816 - 817 -8019540 19/6/26 17:08 1 2996 sht_temp=27.80 sht_hum=72.9 ds_temp=27.06 818 - 819 -8019550 19/6/26 17:13 1 2998 sht_temp=27.30 sht_hum=72.4 ds_temp=26.68 820 - 821 -8019560 19/6/26 17:22 1 2992 sht_temp=26.27 sht_hum=62.3 ds_temp=26.56 822 - 823 -8019570 824 - 825 -8019580 826 - 827 -8019590 828 - 829 -80195A0 830 - 831 -80195B0 832 - 833 -80195C0 834 - 835 -80195D0 836 - 837 -80195E0 838 - 839 -80195F0 840 - 841 - 842 -OK 843 -))) 844 - 845 -**Downlink Command:** 846 - 847 -No downlink commands for feature 848 - 849 -== 4.11 Print last few data entries. == 850 - 851 -Feature: Print the last few data entries 852 - 853 -**AT Command: AT+PLDTA** 854 - 855 -(% border="1" %) 856 -|**Command Example**|**Response** 857 -|((( 858 -AT+PLDTA=5 859 - 860 - 861 - 862 -Print last 5 entries 863 -)))|((( 864 -Stop Tx and RTP events when read sensor data 865 - 866 -1 19/6/26 13:59 1 3005 sht_temp=27.09 sht_hum=79.5 ds_temp=26.75 867 - 868 -2 19/6/26 14:04 1 3007 sht_temp=26.65 sht_hum=74.8 ds_temp=26.43 869 - 870 -3 19/6/26 14:09 1 3007 sht_temp=26.91 sht_hum=77.9 ds_temp=26.56 871 - 872 -4 19/6/26 14:15 1 3007 sht_temp=26.93 sht_hum=76.7 ds_temp=26.75 873 - 874 -5 19/6/26 14:20 1 3007 sht_temp=26.78 sht_hum=76.6 ds_temp=26.43 875 - 876 -Start Tx and RTP events 877 - 878 -OK 879 -))) 880 - 881 -**Downlink Command:** 882 - 883 -No downlink commands for feature 884 - 885 -== 4.12 Clear Flash Record == 886 - 887 -Feature: Clear flash storage for data log feature. 888 - 889 -**AT Command: AT+CLRDTA** 890 - 891 -(% border="1" %) 892 -|**Command Example**|**Function**|**Response** 893 -|AT+CLRDTA|Clear date record|((( 894 -Clear all stored sensor data… 895 - 896 -OK 897 -))) 898 - 899 -**Downlink Command: 0xA3** 900 - 901 -* Example: 0xA301 ~/~/Same as AT+CLRDTA 902 - 903 -= 5. Battery & How to replace = 904 - 905 -== 5.1 Battery Type == 906 - 907 907 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters. 908 908 909 909 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 910 910 [[image:image-20220515075034-1.png||height="208" width="644"]] 911 911 352 + 912 912 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery. 913 913 914 914 915 -== 5.2Replace Battery ==356 +== Replace Battery == 916 916 917 917 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok. 918 918 919 919 [[image:image-20220515075440-2.png||height="338" width="272"]][[image:image-20220515075625-3.png||height="193" width="257"]] 920 920 921 -== 5.3 Battery Life Analyze == 922 922 363 +== Battery Life Analyze == 364 + 923 923 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life: 924 924 https:~/~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf 925 925 926 -= 6. Order Info = 927 927 369 += Order Info = 370 + 928 928 Part Number: (% class="mark" %)**LHT65N-XX** 929 929 930 930 **XX**: The default frequency band ... ... @@ -942,7 +942,7 @@ 942 942 943 943 * **E3**: External Temperature Probe 944 944 945 -= 7.Packing Info =388 += Packing Info = 946 946 947 947 **Package Includes**: 948 948 ... ... @@ -957,10 +957,10 @@ 957 957 * Package Size / pcs : 14.5 x 8 x 5 cm 958 958 * Weight / pcs : 170g 959 959 960 -= 8.FCC Warning =403 += FCC Warning = 961 961 962 962 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions: 963 963 964 -(1) This device may not cause harmful interference ;407 +(1) This device may not cause harmful interference, and 965 965 966 -(2) this device must accept any interference received, including interference that may cause undesired operation .409 +(2) this device must accept any interference received, including interference that may cause undesired operation
- image-20220523000825-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -59.3 KB - Content
- image-20220523001219-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -18.8 KB - Content
- image-20220523001219-12.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -86.2 KB - Content
- image-20220523001219-13.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.6 KB - Content
- image-20220523111447-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -910.1 KB - Content
- image-20220523112300-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.5 KB - Content
- image-20220523115324-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -910.1 KB - Content