<
From version < 56.2 >
edited by Xiaoling
on 2022/05/23 11:58
To version < 52.2 >
edited by Xiaoling
on 2022/05/23 11:12
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,24 +1,20 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220523115324-1.jpeg||height="500" width="500"]]
3 -
4 -
5 -**LHT65N LoRaWAN Temperature & Humidity Sensor Manual**
6 -
7 -
8 -
9 -**Table of Contents:**
10 -
1 +{{box cssClass="floatinginfobox" title="**Contents**"}}
11 11  {{toc/}}
3 +{{/box}}
12 12  
5 +(% class="wikigeneratedid" %)
6 += =
13 13  
14 -
8 +(% class="wikigeneratedid" %)
15 15  = 1.Introduction =
16 16  
17 -== 1.1 What is LHT65N Temperature & Humidity Sensor ==
11 +== 1.1 Overview ==
18 18  
13 +[[image:LHT65N_10.png||alt="LHT65_Image" height="265" width="265"]]
19 19  
20 -The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor**(%%)**.**
21 21  
16 +The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a(% class="mark" %) **built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% class="mark" %)**Temperature Sensor**(%%)**.**
17 +
22 22  The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
23 23  
24 24  LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
... ... @@ -25,12 +25,13 @@
25 25  
26 26  LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
27 27  
28 -LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
24 +LHT65N supports (% class="mark" %)Datalog Feature(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
29 29  
30 30  *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
31 31  
32 -== 1.2 Features ==
33 33  
29 +== Features: ==
30 +
34 34  * Wall mountable
35 35  * LoRaWAN v1.0.3 Class A protocol
36 36  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
... ... @@ -43,7 +43,7 @@
43 43  * Tri-color LED to indicate working status
44 44  * Datalog feature
45 45  
46 -== 1.3 Specification ==
43 +== Specification: ==
47 47  
48 48  **Built-in Temperature Sensor:**
49 49  
... ... @@ -66,9 +66,9 @@
66 66  * ±2°C accuracy from -55°C to +125°C
67 67  * Operating Range: -55 °C ~~ 125 °C
68 68  
69 -= 2. Connect LHT65N to IoT Server =
66 += Connect LHT65N to IoT Server =
70 70  
71 -== 2.1 How does LHT65N work? ==
68 +== How does LHT65N work? ==
72 72  
73 73  LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
74 74  
... ... @@ -75,7 +75,7 @@
75 75  If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
76 76  
77 77  
78 -== 2.2 How to Activate LHT65N? ==
75 +== How to Activate LHT65N? ==
79 79  
80 80  The LHT65N has two working modes:
81 81  
... ... @@ -86,13 +86,12 @@
86 86  
87 87  [[image:image-20220515123819-1.png||height="379" width="317"]]
88 88  
89 -(% border="1" %)
90 90  |**Behavior on ACT**|**Function**|**Action**
91 91  |**Pressing ACT between 1s < time < 3s**|Test uplink status|If LHT65N is already Joined to the LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has an external sensor connected, blue led will blink once. If LHT65N has no external sensor, red led will blink once.
92 92  |**Pressing ACT for more than 3s**|Active Device|green led will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network. green led will solid turn on for 5 seconds after join in network.
93 93  |**Fast press ACT 5 times**|Deactivate Device|red led will solid on for 5 seconds. This means LHT65N is in Deep Sleep Mode.
94 94  
95 -== 2.3 Example to join LoRaWAN network ==
91 +== Example to join LoRaWAN network ==
96 96  
97 97  (% class="wikigeneratedid" %)
98 98  This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
... ... @@ -103,7 +103,7 @@
103 103  Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
104 104  
105 105  
106 -=== 2.3.1 Step 1: Create Device n TTN ===
102 +=== **Step 1**: Create Device n TTN ===
107 107  
108 108  Create a device in TTN V3 with the OTAA keys from LHT65N.
109 109  
... ... @@ -133,7 +133,7 @@
133 133  [[image:image-20220522233118-7.png]]
134 134  
135 135  
136 -=== 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
132 +=== Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
137 137  
138 138  Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
139 139  
... ... @@ -140,7 +140,7 @@
140 140  [[image:image-20220522233300-8.png]]
141 141  
142 142  
143 -== 2.4 Uplink Payload ==
139 +== Uplink Payload: ==
144 144  
145 145  The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and(% class="mark" %) every 20 minutes(%%) send one uplink by default.
146 146  
... ... @@ -147,7 +147,7 @@
147 147  After each uplink, the (% class="mark" %)BLUE LED(%%) will blink once.
148 148  
149 149  
150 -(% border="1" style="width:572px" %)
146 +(% style="width:572px" %)
151 151  |(% style="width:106px" %)**Size(bytes)**|(% style="width:71px" %)**2**|(% style="width:128px" %)**2**|(% style="width:103px" %)**2**|(% style="width:72px" %)**1**|(% style="width:89px" %)**4**
152 152  |(% style="width:106px" %)**Value**|(% style="width:71px" %)[[BAT>>path:#Battery]]|(% style="width:128px" %)(((
153 153  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -163,7 +163,7 @@
163 163  * The 7th byte (EXT #): defines the external sensor model.
164 164  * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won’t be these four bytes.)
165 165  
166 -=== 2.4.1 Decoder in TTN V3 ===
162 +=== Decoder in TTN V3 ===
167 167  
168 168  When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
169 169  
... ... @@ -174,7 +174,7 @@
174 174  [[image:image-20220522234118-10.png]]
175 175  
176 176  
177 -=== 2.4.2 BAT-Battery Info ===
173 +=== BAT-Battery Info ===
178 178  
179 179  These two bytes of BAT include the battery state and the actually voltage
180 180  
... ... @@ -199,7 +199,7 @@
199 199  * BAT status=(0Xcba4>>14)&0xFF=11(B),very good
200 200  * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV
201 201  
202 -=== 2.4.3 Built-in Temperature ===
198 +=== Built-in Temperature ===
203 203  
204 204  [[image:image-20220522235639-2.png]]
205 205  
... ... @@ -209,13 +209,13 @@
209 209  
210 210  * Temperature:  (0xF5C6-65536)/100=-26.18℃
211 211  
212 -=== 2.4.4 Built-in Humidity ===
208 +=== Built-in Humidity ===
213 213  
214 214  [[image:image-20220522235639-4.png]]
215 215  
216 216  * Humidity:    0x025C/10=60.4%
217 217  
218 -=== 2.4.5 Ext # ===
214 +=== Ext # ===
219 219  
220 220  Bytes for External Sensor:
221 221  
... ... @@ -224,16 +224,19 @@
224 224  |(% style="width:139px" %)0x01|(% style="width:484px" %)Sensor E3, Temperature Sensor
225 225  |(% style="width:139px" %)0x09|(% style="width:484px" %)Sensor E3, Temperature Sensor, Datalog Mod
226 226  
227 -=== 2.4.6 Ext value ===
223 +=== Ext value ===
228 228  
229 -==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
225 +==== Ext~=1, E3 Temperature Sensor ====
230 230  
231 231  [[image:image-20220522235639-5.png]]
232 232  
229 +
233 233  * DS18B20 temp=0x0ADD/100=27.81℃
234 234  
235 235  The last 2 bytes of data are meaningless
236 236  
234 +
235 +
237 237  [[image:image-20220522235639-6.png]]
238 238  
239 239  * External temperature= (0xF54F-65536)/100=-27.37℃
... ... @@ -240,15 +240,16 @@
240 240  
241 241  The last 2 bytes of data are meaningless
242 242  
242 +
243 243  If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
244 244  
245 245  
246 -==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
246 +==== Ext~=9, E3 sensor with Unix Timestamp ====
247 247  
248 248  Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
249 249  
250 250  
251 -(% border="1" style="width:697px" %)
251 +(% style="width:697px" %)
252 252  |(% style="width:96px" %)**Size(bytes)**|(% style="width:164px" %)**2**|(% style="width:104px" %)**2**|(% style="width:106px" %)**2**|(% style="width:108px" %)**1**|(% style="width:116px" %)**4**
253 253  |(% style="width:96px" %)**Value**|(% style="width:164px" %)[[External temperature>>path:#DS18b20_value]]|(% style="width:104px" %)(((
254 254  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -266,9 +266,9 @@
266 266  [[Time Stamp>>path:#Unix_Time_Stamp]]
267 267  )))
268 268  
269 -* **Battery status & **[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]]
269 +* **Battery status & **[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]]
270 270  
271 -(% border="1" style="width:587px" %)
271 +(% style="width:587px" %)
272 272  |Bit(bit)|(% style="width:280px" %)[15:14]|(% style="width:136px" %)[11:0]
273 273  |Value|(% style="width:280px" %)(((
274 274  BAT Status
... ... @@ -288,7 +288,7 @@
288 288  
289 289  * **Status & Ext Byte**
290 290  
291 -(% border="1" style="width:732px" %)
291 +(% style="width:732px" %)
292 292  |(% style="width:128px" %)**Bits**|(% style="width:102px" %)**7**|(% style="width:145px" %)**6**|(% style="width:117px" %)**5**|(% style="width:147px" %)**4**|(% style="width:90px" %)**[3:0]**
293 293  |(% style="width:128px" %)**Status & Ext**|(% style="width:102px" %)Not Defined|(% style="width:145px" %)Poll Message Flag|(% style="width:117px" %)Sync time OK|(% style="width:147px" %)Unix Time Request|(% style="width:90px" %)(((
294 294  Ext:
... ... @@ -300,10 +300,11 @@
300 300  * Sync time OK: 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
301 301  * Unix Time Request:1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
302 302  
303 -== 2.5 Show data on Datacake ==
303 +== Show data on Datacake ==
304 304  
305 305  Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
306 306  
307 +
307 307  **Step 1**: Be sure that your device is programmed and properly connected to the LoRaWAN network.
308 308  
309 309  **Step 2**: Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
... ... @@ -328,11 +328,11 @@
328 328  [[image:image-20220523000825-10.png||height="432" width="762"]]
329 329  
330 330  
331 -== 2.6 Datalog Feature ==
332 +== Datalog Feature ==
332 332  
333 333  This feature is always enabled. When user wants to retrieve the sensor value, he can send a poll command from the IoT platform to ask LHT65N to send the value in the required time slot.
334 334  
335 -=== 2.6.1 Unix TimeStamp ===
336 +=== Unix TimeStamp ===
336 336  
337 337  LHT65N uses Unix TimeStamp format based on
338 338  
... ... @@ -343,12 +343,12 @@
343 343  
344 344  Below is the converter example
345 345  
346 -[[image:image-20220523001219-12.png||height="302" width="730"]]
347 +[[image:image-20220523001219-12.png||height="353" width="853"]]
347 347  
348 348  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
349 349  
350 350  
351 -=== 2.6.2 Set Device Time ===
352 +=== Set Device Time ===
352 352  
353 353  There are two ways to set device’s time:
354 354  
... ... @@ -366,12 +366,12 @@
366 366  User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
367 367  
368 368  
369 -=== 2.6.3 Poll sensor value ===
370 +=== Poll sensor value ===
370 370  
371 371  User can poll sensor value based on timestamps from the server. Below is the downlink command.
372 372  
373 373  
374 -(% border="1" style="width:454px" %)
375 +(% style="width:454px" %)
375 375  |(% style="width:69px" %)1byte|(% style="width:129px" %)4bytes|(% style="width:134px" %)4bytes|(% style="width:119px" %)1byte
376 376  |(% style="width:69px" %)31|(% style="width:129px" %)Timestamp start|(% style="width:134px" %)Timestamp end|(% style="width:119px" %)Uplink Interval
377 377  
... ... @@ -385,7 +385,7 @@
385 385  Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s.
386 386  
387 387  
388 -=== 2.6.4 Datalog Uplink payload ===
389 +=== Datalog Uplink payload ===
389 389  
390 390  The Datalog poll reply uplink will use below payload format.
391 391  
... ... @@ -392,7 +392,6 @@
392 392  
393 393  Retrieval data payload
394 394  
395 -(% border="1" %)
396 396  |**Size(bytes)**|**2**|**2**|**2**|**1**|**4**
397 397  |**Value**|[[External sensor data>>path:#Extension_sensor_value]]|(((
398 398  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -411,7 +411,6 @@
411 411  Poll message flag & Ext
412 412  
413 413  
414 -(% border="1" %)
415 415  |**Bits**|**7**|**6**|**5**|**4**|**[3:0]**
416 416  |**Status & Ext**|Not Defined|Poll Message Flag|Sync time OK|Unix Time Request|(((
417 417  Ext:
... ... @@ -471,7 +471,7 @@
471 471  
472 472  LHT65N will uplink this payload.
473 473  
474 -[[image:image-20220523001219-13.png||height="421" width="727"]]
473 +[[image:image-20220523001219-13.png]]
475 475  
476 476  7FFF089801464160065F977FFF088E014B41600660097FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
477 477  
... ... @@ -490,7 +490,7 @@
490 490  Unix time is 0x60065F97=1611030423s=21/1/19 04:27:03
491 491  
492 492  
493 -== 2.7 Alarm Mode ==
492 +== Alarm Mode ==
494 494  
495 495  Alarm mode feature is added since firmware v1.5. When device is in Alarm mode, it will check the built-in sensor temperature in a short interval. If the temperature exceeds the pre-configure range, it will send an uplink immediately.
496 496  
... ... @@ -506,7 +506,7 @@
506 506  
507 507  
508 508  
509 -== 2.8 LED Indicator ==
508 +== LED Indicator ==
510 510  
511 511  The LHT65N has a triple color LED which for easy shows different stage.
512 512  
... ... @@ -521,14 +521,17 @@
521 521  
522 522  ----
523 523  
524 -== 2.9 Installation ==
523 +== Installation ==
525 525  
526 526  [[image:image-20220516231650-1.png||height="436" width="428"]]
527 527  
528 -= 3. Sensors & Accessories =
529 529  
530 -== 3.1 E3 Temperature Probe ==
531 531  
529 +
530 += Sensors & Accessories =
531 +
532 +== E3 Temperature Probe ==
533 +
532 532  [[image:image-20220515080154-4.png||height="182" width="161"]] [[image:image-20220515080330-5.png||height="201" width="195"]]
533 533  
534 534  
... ... @@ -541,7 +541,7 @@
541 541  * -55°C to 125°C
542 542  * Working voltage 2.35v ~~ 5v
543 543  
544 -= 4. Configure LHT65N via AT Command or LoRaWAN Downlink =
546 += Configure LHT65N via AT Command or LoRaWAN Downlink =
545 545  
546 546  Use can configure LHT65N via AT Command or LoRaWAN Downlink.
547 547  
... ... @@ -550,6 +550,7 @@
550 550  
551 551  [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
552 552  
555 +
553 553  There are two kinds of commands to configure LHT65N, they are:
554 554  
555 555  * **General Commands**.
... ... @@ -563,17 +563,19 @@
563 563  
564 564  [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
565 565  
569 +
570 +
566 566  * **Commands special design for LHT65N**
567 567  
568 568  These commands are only valid for LHT65N, as below:
569 569  
570 -== 4.1 Set Transmit Interval Time ==
571 571  
576 +== Set Transmit Interval Time ==
577 +
572 572  Feature: Change LoRaWAN End Node Transmit Interval.
573 573  
574 574  **AT Command: AT+TDC**
575 575  
576 -(% border="1" %)
577 577  |**Command Example**|**Function**|**Response**
578 578  |AT+TDC?|Show current transmit Interval|(((
579 579  30000
... ... @@ -597,13 +597,12 @@
597 597  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
598 598  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
599 599  
600 -== 4.2 Set External Sensor Mode ==
605 +== Set External Sensor Mode ==
601 601  
602 602  Feature: Change External Sensor Mode.
603 603  
604 604  **AT Command: AT+EXT**
605 605  
606 -(% border="1" %)
607 607  |**Command Example**|**Function**|**Response**
608 608  |AT+EXT?|Get current external sensor mode|(((
609 609  1
... ... @@ -625,7 +625,7 @@
625 625  * 0xA209: Same as AT+EXT=9
626 626  * 0xA20702003c,Same as AT+SETCNT=60
627 627  
628 -== 4.3 Enable/Disable uplink Temperature probe ID ==
632 +== Enable/Disable uplink Temperature probe ID ==
629 629  
630 630  Feature: If PID is enabled, device will send the temperature probe ID on:
631 631  
... ... @@ -637,7 +637,6 @@
637 637  
638 638  **AT Command:**
639 639  
640 -(% border="1" %)
641 641  |**Command Example**|**Function**|**Response**
642 642  |AT+PID=1|Enable PID uplink|OK
643 643  
... ... @@ -646,13 +646,13 @@
646 646  * 0xA800     à AT+PID=0
647 647  * 0xA801     à AT+PID=1
648 648  
649 -== 4.4 Set Password ==
650 650  
653 +== Set Password ==
654 +
651 651  Feature: Set device password, max 9 digits
652 652  
653 653  **AT Command: AT+PWORD**
654 654  
655 -(% border="1" %)
656 656  |**Command Example**|**Function**|**Response**
657 657  |AT+PWORD=?|Show password|(((
658 658  123456
... ... @@ -666,13 +666,13 @@
666 666  
667 667  No downlink command for this feature.
668 668  
669 -== 4.5 Quit AT Command ==
670 670  
673 +== Quit AT Command ==
674 +
671 671  Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
672 672  
673 673  **AT Command: AT+DISAT**
674 674  
675 -(% border="1" %)
676 676  |**Command Example**|**Function**|**Response**
677 677  |AT+DISAT|Quit AT Commands mode|OK
678 678  
... ... @@ -681,13 +681,12 @@
681 681  No downlink command for this feature.
682 682  
683 683  
684 -== 4.6 Set to sleep mode ==
687 +== Set to sleep mode ==
685 685  
686 686  Feature: Set device to sleep mode
687 687  
688 688  **AT Command: AT+SLEEP**
689 689  
690 -(% border="1" %)
691 691  | | |
692 692  |**Command Example**|**Function**|**Response**
693 693  |AT+SLEEP|Set to sleep mode|(((
... ... @@ -700,13 +700,13 @@
700 700  
701 701  * There is no downlink command to set to Sleep mode.
702 702  
703 -== 4.7 Set system time ==
704 704  
706 +== Set system time ==
707 +
705 705  Feature: Set system time, unix format. [[See here for format detail.>>path:#TimeStamp]]
706 706  
707 707  **AT Command:**
708 708  
709 -(% border="1" %)
710 710  |**Command Example**|**Function**
711 711  |AT+TIMESTAMP=1611104352|(((
712 712  OK
... ... @@ -718,10 +718,12 @@
718 718  
719 719  0x306007806000 ~/~/ Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
720 720  
721 -== 4.8 Set Time Sync Mode ==
722 722  
724 +== Set Time Sync Mode ==
725 +
723 723  Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
724 724  
728 +
725 725  SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
726 726  
727 727  
... ... @@ -736,13 +736,13 @@
736 736  
737 737  0x28 00 ~/~/ Same As AT+SYNCMOD=0
738 738  
739 -== 4.9 Set Time Sync Interval ==
740 740  
744 +== Set Time Sync Interval ==
745 +
741 741  Feature: Define System time sync interval. SYNCTDC default value: 10 days.
742 742  
743 743  **AT Command:**
744 744  
745 -(% border="1" %)
746 746  |**Command Example**|**Function**
747 747  |AT+SYNCTDC=0x0A|Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
748 748  
... ... @@ -750,13 +750,13 @@
750 750  
751 751  0x29 0A ~/~/ Same as AT+SYNCTDC=0x0A
752 752  
753 -== 4.10 Print data entries base on page. ==
754 754  
758 +== Print data entries base on page. ==
759 +
755 755  Feature: Print the sector data from start page to stop page (max is 416 pages).
756 756  
757 757  **AT Command: AT+PDTA**
758 758  
759 -(% border="1" %)
760 760  |**Command Example**|**Response**
761 761  |(((
762 762  AT+PDTA=1,3
... ... @@ -805,13 +805,14 @@
805 805  
806 806  No downlink commands for feature
807 807  
808 -== 4.11 Print last few data entries. ==
809 809  
813 +
814 +== Print last few data entries. ==
815 +
810 810  Feature: Print the last few data entries
811 811  
812 812  **AT Command: AT+PLDTA**
813 813  
814 -(% border="1" %)
815 815  |**Command Example**|**Response**
816 816  |(((
817 817  AT+PLDTA=5
... ... @@ -841,13 +841,14 @@
841 841  
842 842  No downlink commands for feature
843 843  
844 -== 4.12 Clear Flash Record ==
845 845  
850 +
851 +== Clear Flash Record ==
852 +
846 846  Feature: Clear flash storage for data log feature.
847 847  
848 848  **AT Command: AT+CLRDTA**
849 849  
850 -(% border="1" %)
851 851  |**Command Example**|**Function**|**Response**
852 852  |AT+CLRDTA|Clear date record|(((
853 853  Clear all stored sensor data…
... ... @@ -859,31 +859,36 @@
859 859  
860 860  * Example: 0xA301 ~/~/Same as AT+CLRDTA
861 861  
862 -= 5. Battery & How to replace =
863 863  
864 -== 5.1 Battery Type ==
865 865  
870 += Battery & How to replace =
871 +
872 +== Battery Type ==
873 +
866 866  LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
867 867  
868 868  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
869 869  [[image:image-20220515075034-1.png||height="208" width="644"]]
870 870  
879 +
871 871  The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
872 872  
873 873  
874 -== 5.2 Replace Battery ==
883 +== Replace Battery ==
875 875  
876 876  LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
877 877  
878 878  [[image:image-20220515075440-2.png||height="338" width="272"]][[image:image-20220515075625-3.png||height="193" width="257"]]
879 879  
880 -== 5.3 Battery Life Analyze ==
881 881  
890 +== Battery Life Analyze ==
891 +
882 882  Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
883 883  https:~/~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf
884 884  
885 -= 6. Order Info =
886 886  
896 += Order Info =
897 +
887 887  Part Number: (% class="mark" %)**LHT65N-XX**
888 888  
889 889  **XX**: The default frequency band
... ... @@ -901,7 +901,7 @@
901 901  
902 902  * **E3**: External Temperature Probe
903 903  
904 -= 7. Packing Info =
915 += Packing Info =
905 905  
906 906  **Package Includes**:
907 907  
... ... @@ -916,10 +916,10 @@
916 916  * Package Size / pcs : 14.5 x 8 x 5 cm
917 917  * Weight / pcs : 170g
918 918  
919 -= 8. FCC Warning =
930 += FCC Warning =
920 920  
921 921  This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
922 922  
923 -(1) This device may not cause harmful interference
934 +(1) This device may not cause harmful interference, and
924 924  
925 -(2) this device must accept any interference received, including interference that may cause undesired operation.
936 +(2) this device must accept any interference received, including interference that may cause undesired operation
image-20220523111447-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -910.1 KB
Content
image-20220523112300-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.5 KB
Content
image-20220523115324-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -910.1 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0