Changes for page LHT52 - LoRaWAN Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/30 14:27
Change comment:
Uploaded new attachment "image-20220523000825-9.png", version {1}
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 7 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Edwin - Content
-
... ... @@ -1,24 +1,14 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20220523115324-1.jpeg||height="500" width="500"]] 3 - 4 - 5 -**LHT65N LoRaWAN Temperature & Humidity Sensor Manual** 6 - 7 - 8 - 9 -**Table of Contents:** 10 - 1 +{{box cssClass="floatinginfobox" title="**Contents**"}} 11 11 {{toc/}} 3 +{{/box}} 12 12 5 += Overview = 13 13 7 +[[image:LHT65N_10.png||alt="LHT65_Image" height="265" width="265"]] 14 14 15 -= 1.Introduction = 16 16 17 - == 1.1 WhatisLHT65N Temperature & Humidity Sensor ==10 +The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a(% class="mark" %) **built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% class="mark" %)**Temperature Sensor**(%%)**.** 18 18 19 - 20 -The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor**(%%)**.** 21 - 22 22 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on. 23 23 24 24 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*. ... ... @@ -25,12 +25,13 @@ 25 25 26 26 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway. 27 27 28 -LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.18 +LHT65N supports (% class="mark" %)Datalog Feature(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading. 29 29 30 30 *The actual battery life depends on how often to send data, please see the battery analyzer chapter. 31 31 32 -== 1.2 Features == 33 33 23 +== Features: == 24 + 34 34 * Wall mountable 35 35 * LoRaWAN v1.0.3 Class A protocol 36 36 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915 ... ... @@ -43,7 +43,7 @@ 43 43 * Tri-color LED to indicate working status 44 44 * Datalog feature 45 45 46 -== 1.3Specification ==37 +== Specification: == 47 47 48 48 **Built-in Temperature Sensor:** 49 49 ... ... @@ -66,9 +66,9 @@ 66 66 * ±2°C accuracy from -55°C to +125°C 67 67 * Operating Range: -55 °C ~~ 125 °C 68 68 69 -= 2.Connect LHT65N to IoT Server =60 += Connect LHT65N to IoT Server = 70 70 71 -== 2.1How does LHT65N work? ==62 +== How does LHT65N work? == 72 72 73 73 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N. 74 74 ... ... @@ -75,7 +75,7 @@ 75 75 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes. 76 76 77 77 78 -== 2.2How to Activate LHT65N? ==69 +== How to Activate LHT65N? == 79 79 80 80 The LHT65N has two working modes: 81 81 ... ... @@ -86,13 +86,12 @@ 86 86 87 87 [[image:image-20220515123819-1.png||height="379" width="317"]] 88 88 89 -(% border="1" %) 90 90 |**Behavior on ACT**|**Function**|**Action** 91 91 |**Pressing ACT between 1s < time < 3s**|Test uplink status|If LHT65N is already Joined to the LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has an external sensor connected, blue led will blink once. If LHT65N has no external sensor, red led will blink once. 92 92 |**Pressing ACT for more than 3s**|Active Device|green led will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network. green led will solid turn on for 5 seconds after join in network. 93 93 |**Fast press ACT 5 times**|Deactivate Device|red led will solid on for 5 seconds. This means LHT65N is in Deep Sleep Mode. 94 94 95 -== 2.3Example to join LoRaWAN network ==85 +== Example to join LoRaWAN network == 96 96 97 97 (% class="wikigeneratedid" %) 98 98 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure. ... ... @@ -103,7 +103,7 @@ 103 103 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3: 104 104 105 105 106 -=== 2.3.1Step 1: Create Device n TTN ===96 +=== **Step 1**: Create Device n TTN === 107 107 108 108 Create a device in TTN V3 with the OTAA keys from LHT65N. 109 109 ... ... @@ -133,7 +133,7 @@ 133 133 [[image:image-20220522233118-7.png]] 134 134 135 135 136 -=== 2.3.2Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===126 +=== Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. === 137 137 138 138 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel. 139 139 ... ... @@ -140,7 +140,7 @@ 140 140 [[image:image-20220522233300-8.png]] 141 141 142 142 143 -== 2.4Uplink Payload ==133 +== Uplink Payload: == 144 144 145 145 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and(% class="mark" %) every 20 minutes(%%) send one uplink by default. 146 146 ... ... @@ -147,7 +147,7 @@ 147 147 After each uplink, the (% class="mark" %)BLUE LED(%%) will blink once. 148 148 149 149 150 -(% border="1"style="width:572px" %)140 +(% style="width:572px" %) 151 151 |(% style="width:106px" %)**Size(bytes)**|(% style="width:71px" %)**2**|(% style="width:128px" %)**2**|(% style="width:103px" %)**2**|(% style="width:72px" %)**1**|(% style="width:89px" %)**4** 152 152 |(% style="width:106px" %)**Value**|(% style="width:71px" %)[[BAT>>path:#Battery]]|(% style="width:128px" %)((( 153 153 [[Built-In>>path:#SHT20_Temperature]] ... ... @@ -163,7 +163,7 @@ 163 163 * The 7th byte (EXT #): defines the external sensor model. 164 164 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won’t be these four bytes.) 165 165 166 -=== 2.4.1Decoder in TTN V3 ===156 +=== Decoder in TTN V3 === 167 167 168 168 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading. 169 169 ... ... @@ -174,7 +174,7 @@ 174 174 [[image:image-20220522234118-10.png]] 175 175 176 176 177 -=== 2.4.2BAT-Battery Info ===167 +=== BAT-Battery Info === 178 178 179 179 These two bytes of BAT include the battery state and the actually voltage 180 180 ... ... @@ -199,24 +199,27 @@ 199 199 * BAT status=(0Xcba4>>14)&0xFF=11(B),very good 200 200 * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV 201 201 202 -=== 2.4.3Built-in Temperature ===192 +=== Built-in Temperature === 203 203 204 204 [[image:image-20220522235639-2.png]] 205 205 206 206 * Temperature: 0x0ABB/100=27.47℃ 207 207 198 + 208 208 [[image:image-20220522235639-3.png]] 209 209 210 210 * Temperature: (0xF5C6-65536)/100=-26.18℃ 211 211 212 -=== 2.4.4 Built-in Humidity === 213 213 204 +=== Built-in Humidity === 205 + 214 214 [[image:image-20220522235639-4.png]] 215 215 216 216 * Humidity: 0x025C/10=60.4% 217 217 218 -=== 2.4.5 Ext # === 219 219 211 +=== Ext # === 212 + 220 220 Bytes for External Sensor: 221 221 222 222 (% style="width:624px" %) ... ... @@ -224,16 +224,20 @@ 224 224 |(% style="width:139px" %)0x01|(% style="width:484px" %)Sensor E3, Temperature Sensor 225 225 |(% style="width:139px" %)0x09|(% style="width:484px" %)Sensor E3, Temperature Sensor, Datalog Mod 226 226 227 -=== 2.4.6 Ext value === 228 228 229 -=== =2.4.6.1Ext~=1,E3 TemperatureSensor====221 +=== Ext value === 230 230 223 +==== Ext~=1, E3 Temperature Sensor ==== 224 + 231 231 [[image:image-20220522235639-5.png]] 232 232 227 + 233 233 * DS18B20 temp=0x0ADD/100=27.81℃ 234 234 235 235 The last 2 bytes of data are meaningless 236 236 232 + 233 + 237 237 [[image:image-20220522235639-6.png]] 238 238 239 239 * External temperature= (0xF54F-65536)/100=-27.37℃ ... ... @@ -240,15 +240,16 @@ 240 240 241 241 The last 2 bytes of data are meaningless 242 242 240 + 243 243 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃ 244 244 245 245 246 -==== 2.4.6.2Ext~=9, E3 sensor with Unix Timestamp ====244 +==== Ext~=9, E3 sensor with Unix Time stamp ==== 247 247 248 248 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below: 249 249 250 250 251 -(% border="1"style="width:697px" %)249 +(% style="width:697px" %) 252 252 |(% style="width:96px" %)**Size(bytes)**|(% style="width:164px" %)**2**|(% style="width:104px" %)**2**|(% style="width:106px" %)**2**|(% style="width:108px" %)**1**|(% style="width:116px" %)**4** 253 253 |(% style="width:96px" %)**Value**|(% style="width:164px" %)[[External temperature>>path:#DS18b20_value]]|(% style="width:104px" %)((( 254 254 [[Built-In>>path:#SHT20_Temperature]] ... ... @@ -266,9 +266,9 @@ 266 266 [[Time Stamp>>path:#Unix_Time_Stamp]] 267 267 ))) 268 268 269 -* **Battery status & **[[ (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]]267 +* **Battery status & **[[**Built-in Humidity**>>path:#SHT20_Humidity]] 270 270 271 -(% border="1"style="width:587px" %)269 +(% style="width:587px" %) 272 272 |Bit(bit)|(% style="width:280px" %)[15:14]|(% style="width:136px" %)[11:0] 273 273 |Value|(% style="width:280px" %)((( 274 274 BAT Status ... ... @@ -286,9 +286,10 @@ 286 286 287 287 ))) 288 288 287 + 289 289 * **Status & Ext Byte** 290 290 291 -(% border="1"style="width:732px" %)290 +(% style="width:732px" %) 292 292 |(% style="width:128px" %)**Bits**|(% style="width:102px" %)**7**|(% style="width:145px" %)**6**|(% style="width:117px" %)**5**|(% style="width:147px" %)**4**|(% style="width:90px" %)**[3:0]** 293 293 |(% style="width:128px" %)**Status & Ext**|(% style="width:102px" %)Not Defined|(% style="width:145px" %)Poll Message Flag|(% style="width:117px" %)Sync time OK|(% style="width:147px" %)Unix Time Request|(% style="width:90px" %)((( 294 294 Ext: ... ... @@ -300,214 +300,10 @@ 300 300 * Sync time OK: 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server. 301 301 * Unix Time Request:1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this) 302 302 303 -== 2.5 Show data on Datacake == 304 304 305 -Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps: 306 306 307 - **Step1**:Be sure that yourdevice is programmed and properly connected tothe LoRaWAN network.304 +== LED Indicator == 308 308 309 -**Step 2**: Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations. 310 - 311 - 312 -Add Datacake: 313 - 314 -[[image:image-20220523000825-7.png||height="262" width="583"]] 315 - 316 - 317 -Select default key as Access Key: 318 - 319 -[[image:image-20220523000825-8.png||height="453" width="406"]] 320 - 321 - 322 -In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device. 323 - 324 -[[image:image-20220523000825-9.png||height="366" width="392"]] 325 - 326 - 327 - 328 -[[image:image-20220523000825-10.png||height="432" width="762"]] 329 - 330 - 331 -== 2.6 Datalog Feature == 332 - 333 -This feature is always enabled. When user wants to retrieve the sensor value, he can send a poll command from the IoT platform to ask LHT65N to send the value in the required time slot. 334 - 335 -=== 2.6.1 Unix TimeStamp === 336 - 337 -LHT65N uses Unix TimeStamp format based on 338 - 339 -[[image:image-20220523001219-11.png||height="97" width="627"]] 340 - 341 - 342 -User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 343 - 344 -Below is the converter example 345 - 346 -[[image:image-20220523001219-12.png||height="302" width="730"]] 347 - 348 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 349 - 350 - 351 -=== 2.6.2 Set Device Time === 352 - 353 -There are two ways to set device’s time: 354 - 355 -**~1. Through LoRaWAN MAC Command (Default settings)** 356 - 357 -User need to set SYNCMOD=1 to enable sync time via MAC command. 358 - 359 -Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 360 - 361 -Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn’t support. If server doesn’t support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1. 362 - 363 - 364 -**2. Manually Set Time** 365 - 366 -User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server. 367 - 368 - 369 -=== 2.6.3 Poll sensor value === 370 - 371 -User can poll sensor value based on timestamps from the server. Below is the downlink command. 372 - 373 - 374 -(% border="1" style="width:454px" %) 375 -|(% style="width:69px" %)1byte|(% style="width:129px" %)4bytes|(% style="width:134px" %)4bytes|(% style="width:119px" %)1byte 376 -|(% style="width:69px" %)31|(% style="width:129px" %)Timestamp start|(% style="width:134px" %)Timestamp end|(% style="width:119px" %)Uplink Interval 377 - 378 -Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval. 379 - 380 - 381 -For example, downlink command 31 5FC5F350 5FC6 0160 05 382 - 383 -Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00’s data 384 - 385 -Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s. 386 - 387 - 388 -=== 2.6.4 Datalog Uplink payload === 389 - 390 -The Datalog poll reply uplink will use below payload format. 391 - 392 - 393 -Retrieval data payload 394 - 395 -(% border="1" %) 396 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**4** 397 -|**Value**|[[External sensor data>>path:#Extension_sensor_value]]|((( 398 -[[Built-In>>path:#SHT20_Temperature]] 399 - 400 -[[Temperature>>path:#SHT20_Temperature]] 401 -)))|((( 402 -[[Built-in>>path:#SHT20_Humidity]] 403 - 404 -[[Humidity>>path:#SHT20_Humidity]] 405 -)))|[[Poll message flag & Ext>>path:#Poll_EXT]]|((( 406 -[[Unix Time Stamp>>path:#Unix_Time_Stamp]] 407 - 408 - 409 -))) 410 - 411 -Poll message flag & Ext 412 - 413 - 414 -(% border="1" %) 415 -|**Bits**|**7**|**6**|**5**|**4**|**[3:0]** 416 -|**Status & Ext**|Not Defined|Poll Message Flag|Sync time OK|Unix Time Request|((( 417 -Ext: 418 - 419 -0b(1001) 420 -))) 421 - 422 -Poll Message Flag: 1: This message is a poll message reply. 423 - 424 -* Poll Message Flag is set to 1. 425 -* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands. 426 - 427 -For example, in US915 band, the max payload for different DR is: 428 - 429 -a) DR0: max is 11 bytes so one entry of data 430 - 431 -b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 432 - 433 -c) DR2: total payload includes 11 entries of data 434 - 435 -d) DR3: total payload includes 22 entries of data. 436 - 437 -If devise doesn’t have any data in the polling time. Device will uplink 11 bytes of 0 438 - 439 - 440 -**Example:** 441 - 442 -If LHT65N has below data inside Flash: 443 - 444 -Flash Addr |Unix Time | Ext | BAT voltage| Value 445 - 446 -80196E0 21/1/19 04:27:03 1 3145 sht_temp=22.00 sht_hum=32.6 ds_temp=327.67 447 - 448 -80196F0 21/1/19 04:28:57 1 3145 sht_temp=21.90 sht_hum=33.1 ds_temp=327.67 449 - 450 -8019700 21/1/19 04:30:30 1 3145 sht_temp=21.81 sht_hum=33.4 ds_temp=327.67 451 - 452 -8019710 21/1/19 04:40:30 1 3145 sht_temp=21.65 sht_hum=33.7 ds_temp=327.67 453 - 454 -8019720 21/1/19 04:50:30 1 3147 sht_temp=21.55 sht_hum=34.1 ds_temp=327.67 455 - 456 -8019730 21/1/19 05:00:30 1 3149 sht_temp=21.50 sht_hum=34.1 ds_temp=327.67 457 - 458 -8019740 21/1/19 05:10:30 1 3149 sht_temp=21.43 sht_hum=34.6 ds_temp=327.67 459 - 460 -8019750 21/1/19 05:20:30 1 3151 sht_temp=21.35 sht_hum=34.9 ds_temp=327.67 461 - 462 - 463 -If user sends below downlink command: 464 - 465 -3160065F9760066DA705 466 - 467 - Where : Start time: 60065F97 = time 21/1/19 04:27:03 468 - 469 - Stop time 60066DA7= time 21/1/19 05:27:03 470 - 471 - 472 -LHT65N will uplink this payload. 473 - 474 -[[image:image-20220523001219-13.png||height="421" width="727"]] 475 - 476 -7FFF089801464160065F977FFF088E014B41600660097FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E 477 - 478 -Where the first 11 bytes is for the first entry: 479 - 480 -7FFF089801464160065F97 481 - 482 -Ext sensor data=0x7FFF/100=327.67 483 - 484 -Temp=0x0898/100=22.00 485 - 486 -Hum=0x0146/10=32.6 487 - 488 -poll message flag & Ext=0x41,means reply data,Ext=1 489 - 490 -Unix time is 0x60065F97=1611030423s=21/1/19 04:27:03 491 - 492 - 493 -== 2.7 Alarm Mode == 494 - 495 -Alarm mode feature is added since firmware v1.5. When device is in Alarm mode, it will check the built-in sensor temperature in a short interval. If the temperature exceeds the pre-configure range, it will send an uplink immediately. 496 - 497 - 498 -Note: Alarm mode will increase a little big the power consumption, we recommend extending the normal reading time when enabling this feature. 499 - 500 - 501 -AT Commands for Alarm mode: 502 - 503 -**AT+WMOD=1**: Enable/Disable Alarm Mode. (0:Disable, 1: Enable) 504 - 505 -**AT+CITEMP=1**: The interval to check the temperature for Alarm. (Unit: minute) 506 - 507 - 508 - 509 -== 2.8 LED Indicator == 510 - 511 511 The LHT65N has a triple color LED which for easy shows different stage. 512 512 513 513 While pressing ACT button, the LED will work as per LED status with ACT button. ... ... @@ -521,14 +521,17 @@ 521 521 522 522 ---- 523 523 524 -== 2.9Installation ==319 +== Installation == 525 525 526 -[[image:image-20220516231650-1.png||height=" 436" width="428"]]321 +[[image:image-20220516231650-1.png||height="632" width="620"]] 527 527 528 -= 3. Sensors & Accessories = 529 529 530 -== 3.1 E3 Temperature Probe == 531 531 325 + 326 += Sensors & Accessories = 327 + 328 +== E3 Temperature Probe == 329 + 532 532 [[image:image-20220515080154-4.png||height="182" width="161"]] [[image:image-20220515080330-5.png||height="201" width="195"]] 533 533 534 534 ... ... @@ -540,350 +540,36 @@ 540 540 * Operating Range: -40 ~~ 125 °C 541 541 * -55°C to 125°C 542 542 * Working voltage 2.35v ~~ 5v 341 + 543 543 544 -= 4. ConfigureLHT65Nvia AT CommandorLoRaWANDownlink=343 += Battery & How to replace = 545 545 546 - Usecan configureLHT65Nvia AT Command or LoRaWAN Downlink.345 +== Battery Type == 547 547 548 -* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]]. 549 -* LoRaWAN Downlink instruction for different platforms: 550 - 551 -[[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]] 552 - 553 -There are two kinds of commands to configure LHT65N, they are: 554 - 555 -* **General Commands**. 556 - 557 -These commands are to configure: 558 - 559 -* General system settings like: uplink interval. 560 -* LoRaWAN protocol & radio-related commands. 561 - 562 -They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: 563 - 564 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]] 565 - 566 -* **Commands special design for LHT65N** 567 - 568 -These commands are only valid for LHT65N, as below: 569 - 570 -== 4.1 Set Transmit Interval Time == 571 - 572 -Feature: Change LoRaWAN End Node Transmit Interval. 573 - 574 -**AT Command: AT+TDC** 575 - 576 -(% border="1" %) 577 -|**Command Example**|**Function**|**Response** 578 -|AT+TDC?|Show current transmit Interval|((( 579 -30000 580 - 581 -OK 582 - 583 -the interval is 30000ms = 30s 584 -))) 585 -|AT+TDC=60000|Set Transmit Interval|((( 586 -OK 587 - 588 -Set transmit interval to 60000ms = 60 seconds 589 -))) 590 - 591 -**Downlink Command: 0x01** 592 - 593 -Format: Command Code (0x01) followed by 3 bytes time value. 594 - 595 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 596 - 597 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 598 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 599 - 600 -== 4.2 Set External Sensor Mode == 601 - 602 -Feature: Change External Sensor Mode. 603 - 604 -**AT Command: AT+EXT** 605 - 606 -(% border="1" %) 607 -|**Command Example**|**Function**|**Response** 608 -|AT+EXT?|Get current external sensor mode|((( 609 -1 610 - 611 -OK 612 - 613 -External Sensor mode =1 614 -))) 615 -|AT+EXT=1|(% colspan="2" %)Set external sensor mode to 1 616 -|AT+EXT=9|(% colspan="2" %)Set to external DS18B20 with timestamp 617 - 618 -**Downlink Command: 0xA2** 619 - 620 -Total bytes: 2 ~~ 5 bytes 621 - 622 -Example: 623 - 624 -* 0xA201: Set external sensor type to E1 625 -* 0xA209: Same as AT+EXT=9 626 -* 0xA20702003c,Same as AT+SETCNT=60 627 - 628 -== 4.3 Enable/Disable uplink Temperature probe ID == 629 - 630 -Feature: If PID is enabled, device will send the temperature probe ID on: 631 - 632 -* First Packet after OTAA Join 633 -* Every 24 hours since the first packet. 634 - 635 -PID is default set to disable (0) 636 - 637 - 638 -**AT Command:** 639 - 640 -(% border="1" %) 641 -|**Command Example**|**Function**|**Response** 642 -|AT+PID=1|Enable PID uplink|OK 643 - 644 -**Downlink Command:** 645 - 646 -* 0xA800 à AT+PID=0 647 -* 0xA801 à AT+PID=1 648 - 649 -== 4.4 Set Password == 650 - 651 -Feature: Set device password, max 9 digits 652 - 653 -**AT Command: AT+PWORD** 654 - 655 -(% border="1" %) 656 -|**Command Example**|**Function**|**Response** 657 -|AT+PWORD=?|Show password|((( 658 -123456 659 - 660 - 661 -OK 662 -))) 663 -|AT+PWORD=999999|Set password|OK 664 - 665 -**Downlink Command:** 666 - 667 -No downlink command for this feature. 668 - 669 -== 4.5 Quit AT Command == 670 - 671 -Feature: Quit AT Command mode, so user needs to input password again before use AT Commands. 672 - 673 -**AT Command: AT+DISAT** 674 - 675 -(% border="1" %) 676 -|**Command Example**|**Function**|**Response** 677 -|AT+DISAT|Quit AT Commands mode|OK 678 - 679 -**Downlink Command:** 680 - 681 -No downlink command for this feature. 682 - 683 - 684 -== 4.6 Set to sleep mode == 685 - 686 -Feature: Set device to sleep mode 687 - 688 -**AT Command: AT+SLEEP** 689 - 690 -(% border="1" %) 691 -| | | 692 -|**Command Example**|**Function**|**Response** 693 -|AT+SLEEP|Set to sleep mode|((( 694 -Clear all stored sensor data… 695 - 696 -OK 697 -))) 698 - 699 -**Downlink Command:** 700 - 701 -* There is no downlink command to set to Sleep mode. 702 - 703 -== 4.7 Set system time == 704 - 705 -Feature: Set system time, unix format. [[See here for format detail.>>path:#TimeStamp]] 706 - 707 -**AT Command:** 708 - 709 -(% border="1" %) 710 -|**Command Example**|**Function** 711 -|AT+TIMESTAMP=1611104352|((( 712 -OK 713 - 714 -Set System time to 2021-01-20 00:59:12 715 -))) 716 - 717 -**Downlink Command:** 718 - 719 -0x306007806000 ~/~/ Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352 720 - 721 -== 4.8 Set Time Sync Mode == 722 - 723 -Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command. 724 - 725 -SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0. 726 - 727 - 728 -**AT Command:** 729 - 730 -|**Command Example**|**Function** 731 -|AT+SYNCMOD=1|Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq) 732 - 733 -**Downlink Command:** 734 - 735 -0x28 01 ~/~/ Same As AT+SYNCMOD=1 736 - 737 -0x28 00 ~/~/ Same As AT+SYNCMOD=0 738 - 739 -== 4.9 Set Time Sync Interval == 740 - 741 -Feature: Define System time sync interval. SYNCTDC default value: 10 days. 742 - 743 -**AT Command:** 744 - 745 -(% border="1" %) 746 -|**Command Example**|**Function** 747 -|AT+SYNCTDC=0x0A|Set SYNCTDC to 10 (0x0A), so the sync time is 10 days. 748 - 749 -**Downlink Command:** 750 - 751 -0x29 0A ~/~/ Same as AT+SYNCTDC=0x0A 752 - 753 -== 4.10 Print data entries base on page. == 754 - 755 -Feature: Print the sector data from start page to stop page (max is 416 pages). 756 - 757 -**AT Command: AT+PDTA** 758 - 759 -(% border="1" %) 760 -|**Command Example**|**Response** 761 -|((( 762 -AT+PDTA=1,3 763 - 764 - 765 - 766 -Print page 1 to 3 767 -)))|((( 768 -8019500 19/6/26 16:48 1 2992 sht_temp=28.21 sht_hum=71.5 ds_temp=27.31 769 - 770 -8019510 19/6/26 16:53 1 2994 sht_temp=27.64 sht_hum=69.3 ds_temp=26.93 771 - 772 -8019520 19/6/26 16:58 1 2996 sht_temp=28.39 sht_hum=72.0 ds_temp=27.06 773 - 774 -8019530 19/6/26 17:03 1 2996 sht_temp=27.97 sht_hum=70.4 ds_temp=27.12 775 - 776 -8019540 19/6/26 17:08 1 2996 sht_temp=27.80 sht_hum=72.9 ds_temp=27.06 777 - 778 -8019550 19/6/26 17:13 1 2998 sht_temp=27.30 sht_hum=72.4 ds_temp=26.68 779 - 780 -8019560 19/6/26 17:22 1 2992 sht_temp=26.27 sht_hum=62.3 ds_temp=26.56 781 - 782 -8019570 783 - 784 -8019580 785 - 786 -8019590 787 - 788 -80195A0 789 - 790 -80195B0 791 - 792 -80195C0 793 - 794 -80195D0 795 - 796 -80195E0 797 - 798 -80195F0 799 - 800 - 801 -OK 802 -))) 803 - 804 -**Downlink Command:** 805 - 806 -No downlink commands for feature 807 - 808 -== 4.11 Print last few data entries. == 809 - 810 -Feature: Print the last few data entries 811 - 812 -**AT Command: AT+PLDTA** 813 - 814 -(% border="1" %) 815 -|**Command Example**|**Response** 816 -|((( 817 -AT+PLDTA=5 818 - 819 - 820 - 821 -Print last 5 entries 822 -)))|((( 823 -Stop Tx and RTP events when read sensor data 824 - 825 -1 19/6/26 13:59 1 3005 sht_temp=27.09 sht_hum=79.5 ds_temp=26.75 826 - 827 -2 19/6/26 14:04 1 3007 sht_temp=26.65 sht_hum=74.8 ds_temp=26.43 828 - 829 -3 19/6/26 14:09 1 3007 sht_temp=26.91 sht_hum=77.9 ds_temp=26.56 830 - 831 -4 19/6/26 14:15 1 3007 sht_temp=26.93 sht_hum=76.7 ds_temp=26.75 832 - 833 -5 19/6/26 14:20 1 3007 sht_temp=26.78 sht_hum=76.6 ds_temp=26.43 834 - 835 -Start Tx and RTP events 836 - 837 -OK 838 -))) 839 - 840 -**Downlink Command:** 841 - 842 -No downlink commands for feature 843 - 844 -== 4.12 Clear Flash Record == 845 - 846 -Feature: Clear flash storage for data log feature. 847 - 848 -**AT Command: AT+CLRDTA** 849 - 850 -(% border="1" %) 851 -|**Command Example**|**Function**|**Response** 852 -|AT+CLRDTA|Clear date record|((( 853 -Clear all stored sensor data… 854 - 855 -OK 856 -))) 857 - 858 -**Downlink Command: 0xA3** 859 - 860 -* Example: 0xA301 ~/~/Same as AT+CLRDTA 861 - 862 -= 5. Battery & How to replace = 863 - 864 -== 5.1 Battery Type == 865 - 866 866 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters. 867 867 868 868 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 869 869 [[image:image-20220515075034-1.png||height="208" width="644"]] 870 870 352 + 871 871 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery. 872 872 873 873 874 -== 5.2Replace Battery ==356 +== Replace Battery == 875 875 876 876 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok. 877 877 878 878 [[image:image-20220515075440-2.png||height="338" width="272"]][[image:image-20220515075625-3.png||height="193" width="257"]] 879 879 880 -== 5.3 Battery Life Analyze == 881 881 363 +== Battery Life Analyze == 364 + 882 882 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life: 883 883 https:~/~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf 884 884 885 -= 6. Order Info = 886 886 369 += Order Info = 370 + 887 887 Part Number: (% class="mark" %)**LHT65N-XX** 888 888 889 889 **XX**: The default frequency band ... ... @@ -901,7 +901,7 @@ 901 901 902 902 * **E3**: External Temperature Probe 903 903 904 -= 7.Packing Info =388 += Packing Info = 905 905 906 906 **Package Includes**: 907 907 ... ... @@ -916,10 +916,10 @@ 916 916 * Package Size / pcs : 14.5 x 8 x 5 cm 917 917 * Weight / pcs : 170g 918 918 919 -= 8.FCC Warning =403 += FCC Warning = 920 920 921 921 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions: 922 922 923 -(1) This device may not cause harmful interference ;407 +(1) This device may not cause harmful interference, and 924 924 925 -(2) this device must accept any interference received, including interference that may cause undesired operation .409 +(2) this device must accept any interference received, including interference that may cause undesired operation
- image-20220523000825-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -59.3 KB - Content
- image-20220523001219-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -18.8 KB - Content
- image-20220523001219-12.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -86.2 KB - Content
- image-20220523001219-13.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.6 KB - Content
- image-20220523111447-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -910.1 KB - Content
- image-20220523112300-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.5 KB - Content
- image-20220523115324-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -910.1 KB - Content