<
From version < 55.4 >
edited by Xiaoling
on 2022/05/23 11:51
To version < 45.1 >
edited by Edwin Chen
on 2022/05/23 00:08
>
Change comment: Uploaded new attachment "image-20220523000825-9.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,19 +4,12 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220523111447-1.jpeg||height="448" width="448"]]
3 -
4 4  {{box cssClass="floatinginfobox" title="**Contents**"}}
5 5  {{toc/}}
6 6  {{/box}}
7 7  
8 -{{toc/}}
5 += Overview =
9 9  
7 +[[image:LHT65N_10.png||alt="LHT65_Image" height="265" width="265"]]
10 10  
11 11  
12 -= 1.Introduction =
13 -
14 -== 1.1 What is LHT65N Temperature & Humidity Sensor ==
15 -
16 -
17 17  The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a(% class="mark" %) **built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% class="mark" %)**Temperature Sensor**(%%)**.**
18 18  
19 19  The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
... ... @@ -26,8 +26,9 @@
26 26  
27 27  *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
28 28  
29 -== 1.2 Features ==
30 30  
23 +== Features: ==
24 +
31 31  * Wall mountable
32 32  * LoRaWAN v1.0.3 Class A protocol
33 33  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
... ... @@ -40,7 +40,7 @@
40 40  * Tri-color LED to indicate working status
41 41  * Datalog feature
42 42  
43 -== 1.3 Specification ==
37 +== Specification: ==
44 44  
45 45  **Built-in Temperature Sensor:**
46 46  
... ... @@ -63,9 +63,9 @@
63 63  * ±2°C accuracy from -55°C to +125°C
64 64  * Operating Range: -55 °C ~~ 125 °C
65 65  
66 -= 2. Connect LHT65N to IoT Server =
60 += Connect LHT65N to IoT Server =
67 67  
68 -== 2.1 How does LHT65N work? ==
62 +== How does LHT65N work? ==
69 69  
70 70  LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
71 71  
... ... @@ -72,7 +72,7 @@
72 72  If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
73 73  
74 74  
75 -== 2.2 How to Activate LHT65N? ==
69 +== How to Activate LHT65N? ==
76 76  
77 77  The LHT65N has two working modes:
78 78  
... ... @@ -83,13 +83,12 @@
83 83  
84 84  [[image:image-20220515123819-1.png||height="379" width="317"]]
85 85  
86 -(% border="1" %)
87 87  |**Behavior on ACT**|**Function**|**Action**
88 88  |**Pressing ACT between 1s < time < 3s**|Test uplink status|If LHT65N is already Joined to the LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has an external sensor connected, blue led will blink once. If LHT65N has no external sensor, red led will blink once.
89 89  |**Pressing ACT for more than 3s**|Active Device|green led will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network. green led will solid turn on for 5 seconds after join in network.
90 90  |**Fast press ACT 5 times**|Deactivate Device|red led will solid on for 5 seconds. This means LHT65N is in Deep Sleep Mode.
91 91  
92 -== 2.3 Example to join LoRaWAN network ==
85 +== Example to join LoRaWAN network ==
93 93  
94 94  (% class="wikigeneratedid" %)
95 95  This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
... ... @@ -100,7 +100,7 @@
100 100  Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
101 101  
102 102  
103 -=== 2.3.1 Step 1: Create Device n TTN ===
96 +=== **Step 1**: Create Device n TTN ===
104 104  
105 105  Create a device in TTN V3 with the OTAA keys from LHT65N.
106 106  
... ... @@ -130,7 +130,7 @@
130 130  [[image:image-20220522233118-7.png]]
131 131  
132 132  
133 -=== 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
126 +=== Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
134 134  
135 135  Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
136 136  
... ... @@ -137,7 +137,7 @@
137 137  [[image:image-20220522233300-8.png]]
138 138  
139 139  
140 -== 2.4 Uplink Payload ==
133 +== Uplink Payload: ==
141 141  
142 142  The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and(% class="mark" %) every 20 minutes(%%) send one uplink by default.
143 143  
... ... @@ -144,7 +144,7 @@
144 144  After each uplink, the (% class="mark" %)BLUE LED(%%) will blink once.
145 145  
146 146  
147 -(% border="1" style="width:572px" %)
140 +(% style="width:572px" %)
148 148  |(% style="width:106px" %)**Size(bytes)**|(% style="width:71px" %)**2**|(% style="width:128px" %)**2**|(% style="width:103px" %)**2**|(% style="width:72px" %)**1**|(% style="width:89px" %)**4**
149 149  |(% style="width:106px" %)**Value**|(% style="width:71px" %)[[BAT>>path:#Battery]]|(% style="width:128px" %)(((
150 150  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -160,7 +160,7 @@
160 160  * The 7th byte (EXT #): defines the external sensor model.
161 161  * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won’t be these four bytes.)
162 162  
163 -=== 2.4.1 Decoder in TTN V3 ===
156 +=== Decoder in TTN V3 ===
164 164  
165 165  When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
166 166  
... ... @@ -171,7 +171,7 @@
171 171  [[image:image-20220522234118-10.png]]
172 172  
173 173  
174 -=== 2.4.2 BAT-Battery Info ===
167 +=== BAT-Battery Info ===
175 175  
176 176  These two bytes of BAT include the battery state and the actually voltage
177 177  
... ... @@ -196,24 +196,27 @@
196 196  * BAT status=(0Xcba4>>14)&0xFF=11(B),very good
197 197  * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV
198 198  
199 -=== 2.4.3 Built-in Temperature ===
192 +=== Built-in Temperature ===
200 200  
201 201  [[image:image-20220522235639-2.png]]
202 202  
203 203  * Temperature:  0x0ABB/100=27.47℃
204 204  
198 +
205 205  [[image:image-20220522235639-3.png]]
206 206  
207 207  * Temperature:  (0xF5C6-65536)/100=-26.18℃
208 208  
209 -=== 2.4.4 Built-in Humidity ===
210 210  
204 +=== Built-in Humidity ===
205 +
211 211  [[image:image-20220522235639-4.png]]
212 212  
213 213  * Humidity:    0x025C/10=60.4%
214 214  
215 -=== 2.4.5 Ext # ===
216 216  
211 +=== Ext # ===
212 +
217 217  Bytes for External Sensor:
218 218  
219 219  (% style="width:624px" %)
... ... @@ -221,16 +221,20 @@
221 221  |(% style="width:139px" %)0x01|(% style="width:484px" %)Sensor E3, Temperature Sensor
222 222  |(% style="width:139px" %)0x09|(% style="width:484px" %)Sensor E3, Temperature Sensor, Datalog Mod
223 223  
224 -=== 2.4.6 Ext value ===
225 225  
226 -==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
221 +=== Ext value ===
227 227  
223 +==== Ext~=1, E3 Temperature Sensor ====
224 +
228 228  [[image:image-20220522235639-5.png]]
229 229  
227 +
230 230  * DS18B20 temp=0x0ADD/100=27.81℃
231 231  
232 232  The last 2 bytes of data are meaningless
233 233  
232 +
233 +
234 234  [[image:image-20220522235639-6.png]]
235 235  
236 236  * External temperature= (0xF54F-65536)/100=-27.37℃
... ... @@ -237,15 +237,16 @@
237 237  
238 238  The last 2 bytes of data are meaningless
239 239  
240 +
240 240  If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
241 241  
242 242  
243 -==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
244 +==== Ext~=9, E3 sensor with Unix Time stamp ====
244 244  
245 245  Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
246 246  
247 247  
248 -(% border="1" style="width:697px" %)
249 +(% style="width:697px" %)
249 249  |(% style="width:96px" %)**Size(bytes)**|(% style="width:164px" %)**2**|(% style="width:104px" %)**2**|(% style="width:106px" %)**2**|(% style="width:108px" %)**1**|(% style="width:116px" %)**4**
250 250  |(% style="width:96px" %)**Value**|(% style="width:164px" %)[[External temperature>>path:#DS18b20_value]]|(% style="width:104px" %)(((
251 251  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -263,9 +263,9 @@
263 263  [[Time Stamp>>path:#Unix_Time_Stamp]]
264 264  )))
265 265  
266 -* **Battery status & **[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]]
267 +* **Battery status & **[[**Built-in Humidity**>>path:#SHT20_Humidity]]
267 267  
268 -(% border="1" style="width:587px" %)
269 +(% style="width:587px" %)
269 269  |Bit(bit)|(% style="width:280px" %)[15:14]|(% style="width:136px" %)[11:0]
270 270  |Value|(% style="width:280px" %)(((
271 271  BAT Status
... ... @@ -283,9 +283,10 @@
283 283  
284 284  )))
285 285  
287 +
286 286  * **Status & Ext Byte**
287 287  
288 -(% border="1" style="width:732px" %)
290 +(% style="width:732px" %)
289 289  |(% style="width:128px" %)**Bits**|(% style="width:102px" %)**7**|(% style="width:145px" %)**6**|(% style="width:117px" %)**5**|(% style="width:147px" %)**4**|(% style="width:90px" %)**[3:0]**
290 290  |(% style="width:128px" %)**Status & Ext**|(% style="width:102px" %)Not Defined|(% style="width:145px" %)Poll Message Flag|(% style="width:117px" %)Sync time OK|(% style="width:147px" %)Unix Time Request|(% style="width:90px" %)(((
291 291  Ext:
... ... @@ -297,214 +297,10 @@
297 297  * Sync time OK: 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
298 298  * Unix Time Request:1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
299 299  
300 -== 2.5 Show data on Datacake ==
301 301  
302 -Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
303 303  
304 -**Step 1**: Be sure that your device is programmed and properly connected to the LoRaWAN network.
304 +== LED Indicator ==
305 305  
306 -**Step 2**: Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
307 -
308 -
309 -Add Datacake:
310 -
311 -[[image:image-20220523000825-7.png||height="262" width="583"]]
312 -
313 -
314 -Select default key as Access Key:
315 -
316 -[[image:image-20220523000825-8.png||height="453" width="406"]]
317 -
318 -
319 -In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
320 -
321 -[[image:image-20220523000825-9.png||height="366" width="392"]]
322 -
323 -
324 -
325 -[[image:image-20220523000825-10.png||height="432" width="762"]]
326 -
327 -
328 -== 2.6 Datalog Feature ==
329 -
330 -This feature is always enabled. When user wants to retrieve the sensor value, he can send a poll command from the IoT platform to ask LHT65N to send the value in the required time slot.
331 -
332 -=== 2.6.1 Unix TimeStamp ===
333 -
334 -LHT65N uses Unix TimeStamp format based on
335 -
336 -[[image:image-20220523001219-11.png||height="97" width="627"]]
337 -
338 -
339 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
340 -
341 -Below is the converter example
342 -
343 -[[image:image-20220523001219-12.png||height="302" width="730"]]
344 -
345 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
346 -
347 -
348 -=== 2.6.2 Set Device Time ===
349 -
350 -There are two ways to set device’s time:
351 -
352 -**~1. Through LoRaWAN MAC Command (Default settings)**
353 -
354 -User need to set SYNCMOD=1 to enable sync time via MAC command.
355 -
356 -Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
357 -
358 -Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn’t support. If server doesn’t support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.
359 -
360 -
361 -**2. Manually Set Time**
362 -
363 -User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
364 -
365 -
366 -=== 2.6.3 Poll sensor value ===
367 -
368 -User can poll sensor value based on timestamps from the server. Below is the downlink command.
369 -
370 -
371 -(% border="1" style="width:454px" %)
372 -|(% style="width:69px" %)1byte|(% style="width:129px" %)4bytes|(% style="width:134px" %)4bytes|(% style="width:119px" %)1byte
373 -|(% style="width:69px" %)31|(% style="width:129px" %)Timestamp start|(% style="width:134px" %)Timestamp end|(% style="width:119px" %)Uplink Interval
374 -
375 -Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
376 -
377 -
378 -For example, downlink command 31 5FC5F350 5FC6 0160 05
379 -
380 -Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00’s data
381 -
382 -Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s.
383 -
384 -
385 -=== 2.6.4 Datalog Uplink payload ===
386 -
387 -The Datalog poll reply uplink will use below payload format.
388 -
389 -
390 -Retrieval data payload
391 -
392 -(% border="1" %)
393 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**4**
394 -|**Value**|[[External sensor data>>path:#Extension_sensor_value]]|(((
395 -[[Built-In>>path:#SHT20_Temperature]]
396 -
397 -[[Temperature>>path:#SHT20_Temperature]]
398 -)))|(((
399 -[[Built-in>>path:#SHT20_Humidity]]
400 -
401 -[[Humidity>>path:#SHT20_Humidity]]
402 -)))|[[Poll message flag & Ext>>path:#Poll_EXT]]|(((
403 -[[Unix Time Stamp>>path:#Unix_Time_Stamp]]
404 -
405 -
406 -)))
407 -
408 -Poll message flag & Ext
409 -
410 -
411 -(% border="1" %)
412 -|**Bits**|**7**|**6**|**5**|**4**|**[3:0]**
413 -|**Status & Ext**|Not Defined|Poll Message Flag|Sync time OK|Unix Time Request|(((
414 -Ext:
415 -
416 -0b(1001)
417 -)))
418 -
419 -Poll Message Flag: 1: This message is a poll message reply.
420 -
421 -* Poll Message Flag is set to 1.
422 -* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
423 -
424 -For example, in US915 band, the max payload for different DR is:
425 -
426 -a)      DR0: max is 11 bytes so one entry of data
427 -
428 -b)      DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
429 -
430 -c)      DR2: total payload includes 11 entries of data
431 -
432 -d)      DR3: total payload includes 22 entries of data.
433 -
434 -If devise doesn’t have any data in the polling time. Device will uplink 11 bytes of 0   
435 -
436 -
437 -**Example:**
438 -
439 -If LHT65N has below data inside Flash:
440 -
441 -Flash Addr   |Unix Time | Ext | BAT voltage|  Value                  
442 -
443 -80196E0 21/1/19 04:27:03 1 3145 sht_temp=22.00 sht_hum=32.6 ds_temp=327.67
444 -
445 -80196F0 21/1/19 04:28:57 1 3145 sht_temp=21.90 sht_hum=33.1 ds_temp=327.67
446 -
447 -8019700 21/1/19 04:30:30 1 3145 sht_temp=21.81 sht_hum=33.4 ds_temp=327.67
448 -
449 -8019710 21/1/19 04:40:30 1 3145 sht_temp=21.65 sht_hum=33.7 ds_temp=327.67
450 -
451 -8019720 21/1/19 04:50:30 1 3147 sht_temp=21.55 sht_hum=34.1 ds_temp=327.67
452 -
453 -8019730 21/1/19 05:00:30 1 3149 sht_temp=21.50 sht_hum=34.1 ds_temp=327.67
454 -
455 -8019740 21/1/19 05:10:30 1 3149 sht_temp=21.43 sht_hum=34.6 ds_temp=327.67
456 -
457 -8019750 21/1/19 05:20:30 1 3151 sht_temp=21.35 sht_hum=34.9 ds_temp=327.67
458 -
459 -
460 -If user sends below downlink command:
461 -
462 -3160065F9760066DA705
463 -
464 - Where : Start time: 60065F97 = time 21/1/19 04:27:03
465 -
466 - Stop time 60066DA7= time 21/1/19 05:27:03
467 -
468 -
469 -LHT65N will uplink this payload.
470 -
471 -[[image:image-20220523001219-13.png||height="421" width="727"]]
472 -
473 -7FFF089801464160065F977FFF088E014B41600660097FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
474 -
475 -Where the first 11 bytes is for the first entry:
476 -
477 -7FFF089801464160065F97
478 -
479 -Ext sensor data=0x7FFF/100=327.67
480 -
481 -Temp=0x0898/100=22.00
482 -
483 -Hum=0x0146/10=32.6
484 -
485 -poll message flag & Ext=0x41,means reply data,Ext=1
486 -
487 -Unix time is 0x60065F97=1611030423s=21/1/19 04:27:03
488 -
489 -
490 -== 2.7 Alarm Mode ==
491 -
492 -Alarm mode feature is added since firmware v1.5. When device is in Alarm mode, it will check the built-in sensor temperature in a short interval. If the temperature exceeds the pre-configure range, it will send an uplink immediately.
493 -
494 -
495 -Note: Alarm mode will increase a little big the power consumption, we recommend extending the normal reading time when enabling this feature.
496 -
497 -
498 -AT Commands for Alarm mode:
499 -
500 -**AT+WMOD=1**: Enable/Disable Alarm Mode. (0:Disable, 1: Enable)
501 -
502 -**AT+CITEMP=1**: The interval to check the temperature for Alarm. (Unit: minute)
503 -
504 -
505 -
506 -== 2.8 LED Indicator ==
507 -
508 508  The LHT65N has a triple color LED which for easy shows different stage.
509 509  
510 510  While pressing ACT button, the LED will work as per LED status with ACT button.
... ... @@ -518,14 +518,17 @@
518 518  
519 519  ----
520 520  
521 -== 2.9 Installation ==
319 +== Installation ==
522 522  
523 -[[image:image-20220516231650-1.png||height="436" width="428"]]
321 +[[image:image-20220516231650-1.png||height="632" width="620"]]
524 524  
525 -= 3. Sensors & Accessories =
526 526  
527 -== 3.1 E3 Temperature Probe ==
528 528  
325 +
326 += Sensors & Accessories =
327 +
328 +== E3 Temperature Probe ==
329 +
529 529  [[image:image-20220515080154-4.png||height="182" width="161"]] [[image:image-20220515080330-5.png||height="201" width="195"]]
530 530  
531 531  
... ... @@ -537,350 +537,36 @@
537 537  * Operating Range: -40 ~~ 125 °C
538 538  * -55°C to 125°C
539 539  * Working voltage 2.35v ~~ 5v
341 +
540 540  
541 -= 4. Configure LHT65N via AT Command or LoRaWAN Downlink =
343 += Battery & How to replace =
542 542  
543 -Use can configure LHT65N via AT Command or LoRaWAN Downlink.
345 +== Battery Type ==
544 544  
545 -* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
546 -* LoRaWAN Downlink instruction for different platforms:
547 -
548 -[[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
549 -
550 -There are two kinds of commands to configure LHT65N, they are:
551 -
552 -* **General Commands**.
553 -
554 -These commands are to configure:
555 -
556 -* General system settings like: uplink interval.
557 -* LoRaWAN protocol & radio-related commands.
558 -
559 -They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki:
560 -
561 -[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
562 -
563 -* **Commands special design for LHT65N**
564 -
565 -These commands are only valid for LHT65N, as below:
566 -
567 -== 4.1 Set Transmit Interval Time ==
568 -
569 -Feature: Change LoRaWAN End Node Transmit Interval.
570 -
571 -**AT Command: AT+TDC**
572 -
573 -(% border="1" %)
574 -|**Command Example**|**Function**|**Response**
575 -|AT+TDC?|Show current transmit Interval|(((
576 -30000
577 -
578 -OK
579 -
580 -the interval is 30000ms = 30s
581 -)))
582 -|AT+TDC=60000|Set Transmit Interval|(((
583 -OK
584 -
585 -Set transmit interval to 60000ms = 60 seconds
586 -)))
587 -
588 -**Downlink Command: 0x01**
589 -
590 -Format: Command Code (0x01) followed by 3 bytes time value.
591 -
592 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
593 -
594 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
595 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
596 -
597 -== 4.2 Set External Sensor Mode ==
598 -
599 -Feature: Change External Sensor Mode.
600 -
601 -**AT Command: AT+EXT**
602 -
603 -(% border="1" %)
604 -|**Command Example**|**Function**|**Response**
605 -|AT+EXT?|Get current external sensor mode|(((
606 -1
607 -
608 -OK
609 -
610 -External Sensor mode =1
611 -)))
612 -|AT+EXT=1|(% colspan="2" %)Set external sensor mode to 1
613 -|AT+EXT=9|(% colspan="2" %)Set to external DS18B20 with timestamp
614 -
615 -**Downlink Command: 0xA2**
616 -
617 -Total bytes: 2 ~~ 5 bytes
618 -
619 -Example:
620 -
621 -* 0xA201: Set external sensor type to E1
622 -* 0xA209: Same as AT+EXT=9
623 -* 0xA20702003c,Same as AT+SETCNT=60
624 -
625 -== 4.3 Enable/Disable uplink Temperature probe ID ==
626 -
627 -Feature: If PID is enabled, device will send the temperature probe ID on:
628 -
629 -* First Packet after OTAA Join
630 -* Every 24 hours since the first packet.
631 -
632 -PID is default set to disable (0)
633 -
634 -
635 -**AT Command:**
636 -
637 -(% border="1" %)
638 -|**Command Example**|**Function**|**Response**
639 -|AT+PID=1|Enable PID uplink|OK
640 -
641 -**Downlink Command:**
642 -
643 -* 0xA800     à AT+PID=0
644 -* 0xA801     à AT+PID=1
645 -
646 -== 4.4 Set Password ==
647 -
648 -Feature: Set device password, max 9 digits
649 -
650 -**AT Command: AT+PWORD**
651 -
652 -(% border="1" %)
653 -|**Command Example**|**Function**|**Response**
654 -|AT+PWORD=?|Show password|(((
655 -123456
656 -
657 -
658 -OK
659 -)))
660 -|AT+PWORD=999999|Set password|OK
661 -
662 -**Downlink Command:**
663 -
664 -No downlink command for this feature.
665 -
666 -== 4.5 Quit AT Command ==
667 -
668 -Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
669 -
670 -**AT Command: AT+DISAT**
671 -
672 -(% border="1" %)
673 -|**Command Example**|**Function**|**Response**
674 -|AT+DISAT|Quit AT Commands mode|OK
675 -
676 -**Downlink Command:**
677 -
678 -No downlink command for this feature.
679 -
680 -
681 -== 4.6 Set to sleep mode ==
682 -
683 -Feature: Set device to sleep mode
684 -
685 -**AT Command: AT+SLEEP**
686 -
687 -(% border="1" %)
688 -| | |
689 -|**Command Example**|**Function**|**Response**
690 -|AT+SLEEP|Set to sleep mode|(((
691 -Clear all stored sensor data…
692 -
693 -OK
694 -)))
695 -
696 -**Downlink Command:**
697 -
698 -* There is no downlink command to set to Sleep mode.
699 -
700 -== 4.7 Set system time ==
701 -
702 -Feature: Set system time, unix format. [[See here for format detail.>>path:#TimeStamp]]
703 -
704 -**AT Command:**
705 -
706 -(% border="1" %)
707 -|**Command Example**|**Function**
708 -|AT+TIMESTAMP=1611104352|(((
709 -OK
710 -
711 -Set System time to 2021-01-20 00:59:12
712 -)))
713 -
714 -**Downlink Command:**
715 -
716 -0x306007806000 ~/~/ Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
717 -
718 -== 4.8 Set Time Sync Mode ==
719 -
720 -Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
721 -
722 -SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
723 -
724 -
725 -**AT Command:**
726 -
727 -|**Command Example**|**Function**
728 -|AT+SYNCMOD=1|Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
729 -
730 -**Downlink Command:**
731 -
732 -0x28 01 ~/~/ Same As AT+SYNCMOD=1
733 -
734 -0x28 00 ~/~/ Same As AT+SYNCMOD=0
735 -
736 -== 4.9 Set Time Sync Interval ==
737 -
738 -Feature: Define System time sync interval. SYNCTDC default value: 10 days.
739 -
740 -**AT Command:**
741 -
742 -(% border="1" %)
743 -|**Command Example**|**Function**
744 -|AT+SYNCTDC=0x0A|Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
745 -
746 -**Downlink Command:**
747 -
748 -0x29 0A ~/~/ Same as AT+SYNCTDC=0x0A
749 -
750 -== 4.10 Print data entries base on page. ==
751 -
752 -Feature: Print the sector data from start page to stop page (max is 416 pages).
753 -
754 -**AT Command: AT+PDTA**
755 -
756 -(% border="1" %)
757 -|**Command Example**|**Response**
758 -|(((
759 -AT+PDTA=1,3
760 -
761 -
762 -
763 -Print page 1 to 3
764 -)))|(((
765 -8019500 19/6/26 16:48 1 2992 sht_temp=28.21 sht_hum=71.5 ds_temp=27.31
766 -
767 -8019510 19/6/26 16:53 1 2994 sht_temp=27.64 sht_hum=69.3 ds_temp=26.93
768 -
769 -8019520 19/6/26 16:58 1 2996 sht_temp=28.39 sht_hum=72.0 ds_temp=27.06
770 -
771 -8019530 19/6/26 17:03 1 2996 sht_temp=27.97 sht_hum=70.4 ds_temp=27.12
772 -
773 -8019540 19/6/26 17:08 1 2996 sht_temp=27.80 sht_hum=72.9 ds_temp=27.06
774 -
775 -8019550 19/6/26 17:13 1 2998 sht_temp=27.30 sht_hum=72.4 ds_temp=26.68
776 -
777 -8019560 19/6/26 17:22 1 2992 sht_temp=26.27 sht_hum=62.3 ds_temp=26.56
778 -
779 -8019570
780 -
781 -8019580
782 -
783 -8019590
784 -
785 -80195A0
786 -
787 -80195B0
788 -
789 -80195C0
790 -
791 -80195D0
792 -
793 -80195E0
794 -
795 -80195F0
796 -
797 -
798 -OK
799 -)))
800 -
801 -**Downlink Command:**
802 -
803 -No downlink commands for feature
804 -
805 -== 4.11 Print last few data entries. ==
806 -
807 -Feature: Print the last few data entries
808 -
809 -**AT Command: AT+PLDTA**
810 -
811 -(% border="1" %)
812 -|**Command Example**|**Response**
813 -|(((
814 -AT+PLDTA=5
815 -
816 -
817 -
818 -Print last 5 entries
819 -)))|(((
820 -Stop Tx and RTP events when read sensor data
821 -
822 -1 19/6/26 13:59 1 3005 sht_temp=27.09 sht_hum=79.5 ds_temp=26.75
823 -
824 -2 19/6/26 14:04 1 3007 sht_temp=26.65 sht_hum=74.8 ds_temp=26.43
825 -
826 -3 19/6/26 14:09 1 3007 sht_temp=26.91 sht_hum=77.9 ds_temp=26.56
827 -
828 -4 19/6/26 14:15 1 3007 sht_temp=26.93 sht_hum=76.7 ds_temp=26.75
829 -
830 -5 19/6/26 14:20 1 3007 sht_temp=26.78 sht_hum=76.6 ds_temp=26.43
831 -
832 -Start Tx and RTP events
833 -
834 -OK
835 -)))
836 -
837 -**Downlink Command:**
838 -
839 -No downlink commands for feature
840 -
841 -== 4.12 Clear Flash Record ==
842 -
843 -Feature: Clear flash storage for data log feature.
844 -
845 -**AT Command: AT+CLRDTA**
846 -
847 -(% border="1" %)
848 -|**Command Example**|**Function**|**Response**
849 -|AT+CLRDTA|Clear date record|(((
850 -Clear all stored sensor data…
851 -
852 -OK
853 -)))
854 -
855 -**Downlink Command: 0xA3**
856 -
857 -* Example: 0xA301 ~/~/Same as AT+CLRDTA
858 -
859 -= 5. Battery & How to replace =
860 -
861 -== 5.1 Battery Type ==
862 -
863 863  LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
864 864  
865 865  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
866 866  [[image:image-20220515075034-1.png||height="208" width="644"]]
867 867  
352 +
868 868  The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
869 869  
870 870  
871 -== 5.2 Replace Battery ==
356 +== Replace Battery ==
872 872  
873 873  LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
874 874  
875 875  [[image:image-20220515075440-2.png||height="338" width="272"]][[image:image-20220515075625-3.png||height="193" width="257"]]
876 876  
877 -== 5.3 Battery Life Analyze ==
878 878  
363 +== Battery Life Analyze ==
364 +
879 879  Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
880 880  https:~/~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf
881 881  
882 -= 6. Order Info =
883 883  
369 += Order Info =
370 +
884 884  Part Number: (% class="mark" %)**LHT65N-XX**
885 885  
886 886  **XX**: The default frequency band
... ... @@ -898,7 +898,7 @@
898 898  
899 899  * **E3**: External Temperature Probe
900 900  
901 -= 7. Packing Info =
388 += Packing Info =
902 902  
903 903  **Package Includes**:
904 904  
... ... @@ -913,10 +913,10 @@
913 913  * Package Size / pcs : 14.5 x 8 x 5 cm
914 914  * Weight / pcs : 170g
915 915  
916 -= 8. FCC Warning =
403 += FCC Warning =
917 917  
918 918  This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
919 919  
920 -(1) This device may not cause harmful interference
407 +(1) This device may not cause harmful interference, and
921 921  
922 -(2) this device must accept any interference received, including interference that may cause undesired operation.
409 +(2) this device must accept any interference received, including interference that may cause undesired operation
image-20220523000825-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -59.3 KB
Content
image-20220523001219-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -18.8 KB
Content
image-20220523001219-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -86.2 KB
Content
image-20220523001219-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.6 KB
Content
image-20220523111447-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -910.1 KB
Content
image-20220523112300-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0