<
From version < 53.1 >
edited by Xiaoling
on 2022/05/23 11:12
To version < 56.2 >
edited by Xiaoling
on 2022/05/23 11:58
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,20 +1,24 @@
1 -{{box cssClass="floatinginfobox" title="**Contents**"}}
1 +(% style="text-align:center" %)
2 +[[image:image-20220523115324-1.jpeg||height="500" width="500"]]
3 +
4 +
5 +**LHT65N LoRaWAN Temperature & Humidity Sensor Manual**
6 +
7 +
8 +
9 +**Table of Contents:**
10 +
2 2  {{toc/}}
3 -{{/box}}
4 4  
5 -(% class="wikigeneratedid" %)
6 -= =
7 7  
8 -(% class="wikigeneratedid" %)
14 +
9 9  = 1.Introduction =
10 10  
11 -== 1.1 Overview ==
17 +== 1.1 What is LHT65N Temperature & Humidity Sensor ==
12 12  
13 -[[image:LHT65N_10.png||alt="LHT65_Image" height="265" width="265"]]
14 14  
20 +The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor**(%%)**.**
15 15  
16 -The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a(% class="mark" %) **built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% class="mark" %)**Temperature Sensor**(%%)**.**
17 -
18 18  The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
19 19  
20 20  LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
... ... @@ -21,13 +21,12 @@
21 21  
22 22  LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
23 23  
24 -LHT65N supports (% class="mark" %)Datalog Feature(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
28 +LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
25 25  
26 26  *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
27 27  
32 +== 1.2 Features ==
28 28  
29 -== Features: ==
30 -
31 31  * Wall mountable
32 32  * LoRaWAN v1.0.3 Class A protocol
33 33  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
... ... @@ -40,7 +40,7 @@
40 40  * Tri-color LED to indicate working status
41 41  * Datalog feature
42 42  
43 -== Specification: ==
46 +== 1.3 Specification ==
44 44  
45 45  **Built-in Temperature Sensor:**
46 46  
... ... @@ -63,9 +63,9 @@
63 63  * ±2°C accuracy from -55°C to +125°C
64 64  * Operating Range: -55 °C ~~ 125 °C
65 65  
66 -= Connect LHT65N to IoT Server =
69 += 2. Connect LHT65N to IoT Server =
67 67  
68 -== How does LHT65N work? ==
71 +== 2.1 How does LHT65N work? ==
69 69  
70 70  LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
71 71  
... ... @@ -72,7 +72,7 @@
72 72  If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
73 73  
74 74  
75 -== How to Activate LHT65N? ==
78 +== 2.2 How to Activate LHT65N? ==
76 76  
77 77  The LHT65N has two working modes:
78 78  
... ... @@ -83,12 +83,13 @@
83 83  
84 84  [[image:image-20220515123819-1.png||height="379" width="317"]]
85 85  
89 +(% border="1" %)
86 86  |**Behavior on ACT**|**Function**|**Action**
87 87  |**Pressing ACT between 1s < time < 3s**|Test uplink status|If LHT65N is already Joined to the LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has an external sensor connected, blue led will blink once. If LHT65N has no external sensor, red led will blink once.
88 88  |**Pressing ACT for more than 3s**|Active Device|green led will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network. green led will solid turn on for 5 seconds after join in network.
89 89  |**Fast press ACT 5 times**|Deactivate Device|red led will solid on for 5 seconds. This means LHT65N is in Deep Sleep Mode.
90 90  
91 -== Example to join LoRaWAN network ==
95 +== 2.3 Example to join LoRaWAN network ==
92 92  
93 93  (% class="wikigeneratedid" %)
94 94  This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
... ... @@ -99,7 +99,7 @@
99 99  Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
100 100  
101 101  
102 -=== **Step 1**: Create Device n TTN ===
106 +=== 2.3.1 Step 1: Create Device n TTN ===
103 103  
104 104  Create a device in TTN V3 with the OTAA keys from LHT65N.
105 105  
... ... @@ -129,7 +129,7 @@
129 129  [[image:image-20220522233118-7.png]]
130 130  
131 131  
132 -=== Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
136 +=== 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
133 133  
134 134  Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
135 135  
... ... @@ -136,7 +136,7 @@
136 136  [[image:image-20220522233300-8.png]]
137 137  
138 138  
139 -== Uplink Payload: ==
143 +== 2.4 Uplink Payload ==
140 140  
141 141  The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and(% class="mark" %) every 20 minutes(%%) send one uplink by default.
142 142  
... ... @@ -143,7 +143,7 @@
143 143  After each uplink, the (% class="mark" %)BLUE LED(%%) will blink once.
144 144  
145 145  
146 -(% style="width:572px" %)
150 +(% border="1" style="width:572px" %)
147 147  |(% style="width:106px" %)**Size(bytes)**|(% style="width:71px" %)**2**|(% style="width:128px" %)**2**|(% style="width:103px" %)**2**|(% style="width:72px" %)**1**|(% style="width:89px" %)**4**
148 148  |(% style="width:106px" %)**Value**|(% style="width:71px" %)[[BAT>>path:#Battery]]|(% style="width:128px" %)(((
149 149  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -159,7 +159,7 @@
159 159  * The 7th byte (EXT #): defines the external sensor model.
160 160  * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won’t be these four bytes.)
161 161  
162 -=== Decoder in TTN V3 ===
166 +=== 2.4.1 Decoder in TTN V3 ===
163 163  
164 164  When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
165 165  
... ... @@ -170,7 +170,7 @@
170 170  [[image:image-20220522234118-10.png]]
171 171  
172 172  
173 -=== BAT-Battery Info ===
177 +=== 2.4.2 BAT-Battery Info ===
174 174  
175 175  These two bytes of BAT include the battery state and the actually voltage
176 176  
... ... @@ -195,7 +195,7 @@
195 195  * BAT status=(0Xcba4>>14)&0xFF=11(B),very good
196 196  * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV
197 197  
198 -=== Built-in Temperature ===
202 +=== 2.4.3 Built-in Temperature ===
199 199  
200 200  [[image:image-20220522235639-2.png]]
201 201  
... ... @@ -205,13 +205,13 @@
205 205  
206 206  * Temperature:  (0xF5C6-65536)/100=-26.18℃
207 207  
208 -=== Built-in Humidity ===
212 +=== 2.4.4 Built-in Humidity ===
209 209  
210 210  [[image:image-20220522235639-4.png]]
211 211  
212 212  * Humidity:    0x025C/10=60.4%
213 213  
214 -=== Ext # ===
218 +=== 2.4.5 Ext # ===
215 215  
216 216  Bytes for External Sensor:
217 217  
... ... @@ -220,19 +220,16 @@
220 220  |(% style="width:139px" %)0x01|(% style="width:484px" %)Sensor E3, Temperature Sensor
221 221  |(% style="width:139px" %)0x09|(% style="width:484px" %)Sensor E3, Temperature Sensor, Datalog Mod
222 222  
223 -=== Ext value ===
227 +=== 2.4.6 Ext value ===
224 224  
225 -==== Ext~=1, E3 Temperature Sensor ====
229 +==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
226 226  
227 227  [[image:image-20220522235639-5.png]]
228 228  
229 -
230 230  * DS18B20 temp=0x0ADD/100=27.81℃
231 231  
232 232  The last 2 bytes of data are meaningless
233 233  
234 -
235 -
236 236  [[image:image-20220522235639-6.png]]
237 237  
238 238  * External temperature= (0xF54F-65536)/100=-27.37℃
... ... @@ -239,16 +239,15 @@
239 239  
240 240  The last 2 bytes of data are meaningless
241 241  
242 -
243 243  If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
244 244  
245 245  
246 -==== Ext~=9, E3 sensor with Unix Timestamp ====
246 +==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
247 247  
248 248  Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
249 249  
250 250  
251 -(% style="width:697px" %)
251 +(% border="1" style="width:697px" %)
252 252  |(% style="width:96px" %)**Size(bytes)**|(% style="width:164px" %)**2**|(% style="width:104px" %)**2**|(% style="width:106px" %)**2**|(% style="width:108px" %)**1**|(% style="width:116px" %)**4**
253 253  |(% style="width:96px" %)**Value**|(% style="width:164px" %)[[External temperature>>path:#DS18b20_value]]|(% style="width:104px" %)(((
254 254  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -266,9 +266,9 @@
266 266  [[Time Stamp>>path:#Unix_Time_Stamp]]
267 267  )))
268 268  
269 -* **Battery status & **[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]]
269 +* **Battery status & **[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]]
270 270  
271 -(% style="width:587px" %)
271 +(% border="1" style="width:587px" %)
272 272  |Bit(bit)|(% style="width:280px" %)[15:14]|(% style="width:136px" %)[11:0]
273 273  |Value|(% style="width:280px" %)(((
274 274  BAT Status
... ... @@ -288,7 +288,7 @@
288 288  
289 289  * **Status & Ext Byte**
290 290  
291 -(% style="width:732px" %)
291 +(% border="1" style="width:732px" %)
292 292  |(% style="width:128px" %)**Bits**|(% style="width:102px" %)**7**|(% style="width:145px" %)**6**|(% style="width:117px" %)**5**|(% style="width:147px" %)**4**|(% style="width:90px" %)**[3:0]**
293 293  |(% style="width:128px" %)**Status & Ext**|(% style="width:102px" %)Not Defined|(% style="width:145px" %)Poll Message Flag|(% style="width:117px" %)Sync time OK|(% style="width:147px" %)Unix Time Request|(% style="width:90px" %)(((
294 294  Ext:
... ... @@ -300,11 +300,10 @@
300 300  * Sync time OK: 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
301 301  * Unix Time Request:1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
302 302  
303 -== Show data on Datacake ==
303 +== 2.5 Show data on Datacake ==
304 304  
305 305  Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
306 306  
307 -
308 308  **Step 1**: Be sure that your device is programmed and properly connected to the LoRaWAN network.
309 309  
310 310  **Step 2**: Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
... ... @@ -329,11 +329,11 @@
329 329  [[image:image-20220523000825-10.png||height="432" width="762"]]
330 330  
331 331  
332 -== Datalog Feature ==
331 +== 2.6 Datalog Feature ==
333 333  
334 334  This feature is always enabled. When user wants to retrieve the sensor value, he can send a poll command from the IoT platform to ask LHT65N to send the value in the required time slot.
335 335  
336 -=== Unix TimeStamp ===
335 +=== 2.6.1 Unix TimeStamp ===
337 337  
338 338  LHT65N uses Unix TimeStamp format based on
339 339  
... ... @@ -344,12 +344,12 @@
344 344  
345 345  Below is the converter example
346 346  
347 -[[image:image-20220523001219-12.png||height="353" width="853"]]
346 +[[image:image-20220523001219-12.png||height="302" width="730"]]
348 348  
349 349  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
350 350  
351 351  
352 -=== Set Device Time ===
351 +=== 2.6.2 Set Device Time ===
353 353  
354 354  There are two ways to set device’s time:
355 355  
... ... @@ -367,12 +367,12 @@
367 367  User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
368 368  
369 369  
370 -=== Poll sensor value ===
369 +=== 2.6.3 Poll sensor value ===
371 371  
372 372  User can poll sensor value based on timestamps from the server. Below is the downlink command.
373 373  
374 374  
375 -(% style="width:454px" %)
374 +(% border="1" style="width:454px" %)
376 376  |(% style="width:69px" %)1byte|(% style="width:129px" %)4bytes|(% style="width:134px" %)4bytes|(% style="width:119px" %)1byte
377 377  |(% style="width:69px" %)31|(% style="width:129px" %)Timestamp start|(% style="width:134px" %)Timestamp end|(% style="width:119px" %)Uplink Interval
378 378  
... ... @@ -386,7 +386,7 @@
386 386  Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s.
387 387  
388 388  
389 -=== Datalog Uplink payload ===
388 +=== 2.6.4 Datalog Uplink payload ===
390 390  
391 391  The Datalog poll reply uplink will use below payload format.
392 392  
... ... @@ -393,6 +393,7 @@
393 393  
394 394  Retrieval data payload
395 395  
395 +(% border="1" %)
396 396  |**Size(bytes)**|**2**|**2**|**2**|**1**|**4**
397 397  |**Value**|[[External sensor data>>path:#Extension_sensor_value]]|(((
398 398  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -411,6 +411,7 @@
411 411  Poll message flag & Ext
412 412  
413 413  
414 +(% border="1" %)
414 414  |**Bits**|**7**|**6**|**5**|**4**|**[3:0]**
415 415  |**Status & Ext**|Not Defined|Poll Message Flag|Sync time OK|Unix Time Request|(((
416 416  Ext:
... ... @@ -470,7 +470,7 @@
470 470  
471 471  LHT65N will uplink this payload.
472 472  
473 -[[image:image-20220523001219-13.png]]
474 +[[image:image-20220523001219-13.png||height="421" width="727"]]
474 474  
475 475  7FFF089801464160065F977FFF088E014B41600660097FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
476 476  
... ... @@ -489,7 +489,7 @@
489 489  Unix time is 0x60065F97=1611030423s=21/1/19 04:27:03
490 490  
491 491  
492 -== Alarm Mode ==
493 +== 2.7 Alarm Mode ==
493 493  
494 494  Alarm mode feature is added since firmware v1.5. When device is in Alarm mode, it will check the built-in sensor temperature in a short interval. If the temperature exceeds the pre-configure range, it will send an uplink immediately.
495 495  
... ... @@ -505,7 +505,7 @@
505 505  
506 506  
507 507  
508 -== LED Indicator ==
509 +== 2.8 LED Indicator ==
509 509  
510 510  The LHT65N has a triple color LED which for easy shows different stage.
511 511  
... ... @@ -520,17 +520,14 @@
520 520  
521 521  ----
522 522  
523 -== Installation ==
524 +== 2.9 Installation ==
524 524  
525 525  [[image:image-20220516231650-1.png||height="436" width="428"]]
526 526  
528 += 3. Sensors & Accessories =
527 527  
530 +== 3.1 E3 Temperature Probe ==
528 528  
529 -
530 -= Sensors & Accessories =
531 -
532 -== E3 Temperature Probe ==
533 -
534 534  [[image:image-20220515080154-4.png||height="182" width="161"]] [[image:image-20220515080330-5.png||height="201" width="195"]]
535 535  
536 536  
... ... @@ -543,7 +543,7 @@
543 543  * -55°C to 125°C
544 544  * Working voltage 2.35v ~~ 5v
545 545  
546 -= Configure LHT65N via AT Command or LoRaWAN Downlink =
544 += 4. Configure LHT65N via AT Command or LoRaWAN Downlink =
547 547  
548 548  Use can configure LHT65N via AT Command or LoRaWAN Downlink.
549 549  
... ... @@ -552,7 +552,6 @@
552 552  
553 553  [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
554 554  
555 -
556 556  There are two kinds of commands to configure LHT65N, they are:
557 557  
558 558  * **General Commands**.
... ... @@ -566,19 +566,17 @@
566 566  
567 567  [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
568 568  
569 -
570 -
571 571  * **Commands special design for LHT65N**
572 572  
573 573  These commands are only valid for LHT65N, as below:
574 574  
570 +== 4.1 Set Transmit Interval Time ==
575 575  
576 -== Set Transmit Interval Time ==
577 -
578 578  Feature: Change LoRaWAN End Node Transmit Interval.
579 579  
580 580  **AT Command: AT+TDC**
581 581  
576 +(% border="1" %)
582 582  |**Command Example**|**Function**|**Response**
583 583  |AT+TDC?|Show current transmit Interval|(((
584 584  30000
... ... @@ -602,12 +602,13 @@
602 602  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
603 603  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
604 604  
605 -== Set External Sensor Mode ==
600 +== 4.2 Set External Sensor Mode ==
606 606  
607 607  Feature: Change External Sensor Mode.
608 608  
609 609  **AT Command: AT+EXT**
610 610  
606 +(% border="1" %)
611 611  |**Command Example**|**Function**|**Response**
612 612  |AT+EXT?|Get current external sensor mode|(((
613 613  1
... ... @@ -629,7 +629,7 @@
629 629  * 0xA209: Same as AT+EXT=9
630 630  * 0xA20702003c,Same as AT+SETCNT=60
631 631  
632 -== Enable/Disable uplink Temperature probe ID ==
628 +== 4.3 Enable/Disable uplink Temperature probe ID ==
633 633  
634 634  Feature: If PID is enabled, device will send the temperature probe ID on:
635 635  
... ... @@ -641,6 +641,7 @@
641 641  
642 642  **AT Command:**
643 643  
640 +(% border="1" %)
644 644  |**Command Example**|**Function**|**Response**
645 645  |AT+PID=1|Enable PID uplink|OK
646 646  
... ... @@ -649,13 +649,13 @@
649 649  * 0xA800     à AT+PID=0
650 650  * 0xA801     à AT+PID=1
651 651  
649 +== 4.4 Set Password ==
652 652  
653 -== Set Password ==
654 -
655 655  Feature: Set device password, max 9 digits
656 656  
657 657  **AT Command: AT+PWORD**
658 658  
655 +(% border="1" %)
659 659  |**Command Example**|**Function**|**Response**
660 660  |AT+PWORD=?|Show password|(((
661 661  123456
... ... @@ -669,13 +669,13 @@
669 669  
670 670  No downlink command for this feature.
671 671  
669 +== 4.5 Quit AT Command ==
672 672  
673 -== Quit AT Command ==
674 -
675 675  Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
676 676  
677 677  **AT Command: AT+DISAT**
678 678  
675 +(% border="1" %)
679 679  |**Command Example**|**Function**|**Response**
680 680  |AT+DISAT|Quit AT Commands mode|OK
681 681  
... ... @@ -684,12 +684,13 @@
684 684  No downlink command for this feature.
685 685  
686 686  
687 -== Set to sleep mode ==
684 +== 4.6 Set to sleep mode ==
688 688  
689 689  Feature: Set device to sleep mode
690 690  
691 691  **AT Command: AT+SLEEP**
692 692  
690 +(% border="1" %)
693 693  | | |
694 694  |**Command Example**|**Function**|**Response**
695 695  |AT+SLEEP|Set to sleep mode|(((
... ... @@ -702,13 +702,13 @@
702 702  
703 703  * There is no downlink command to set to Sleep mode.
704 704  
703 +== 4.7 Set system time ==
705 705  
706 -== Set system time ==
707 -
708 708  Feature: Set system time, unix format. [[See here for format detail.>>path:#TimeStamp]]
709 709  
710 710  **AT Command:**
711 711  
709 +(% border="1" %)
712 712  |**Command Example**|**Function**
713 713  |AT+TIMESTAMP=1611104352|(((
714 714  OK
... ... @@ -720,12 +720,10 @@
720 720  
721 721  0x306007806000 ~/~/ Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
722 722  
721 +== 4.8 Set Time Sync Mode ==
723 723  
724 -== Set Time Sync Mode ==
725 -
726 726  Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
727 727  
728 -
729 729  SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
730 730  
731 731  
... ... @@ -740,13 +740,13 @@
740 740  
741 741  0x28 00 ~/~/ Same As AT+SYNCMOD=0
742 742  
739 +== 4.9 Set Time Sync Interval ==
743 743  
744 -== Set Time Sync Interval ==
745 -
746 746  Feature: Define System time sync interval. SYNCTDC default value: 10 days.
747 747  
748 748  **AT Command:**
749 749  
745 +(% border="1" %)
750 750  |**Command Example**|**Function**
751 751  |AT+SYNCTDC=0x0A|Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
752 752  
... ... @@ -754,13 +754,13 @@
754 754  
755 755  0x29 0A ~/~/ Same as AT+SYNCTDC=0x0A
756 756  
753 +== 4.10 Print data entries base on page. ==
757 757  
758 -== Print data entries base on page. ==
759 -
760 760  Feature: Print the sector data from start page to stop page (max is 416 pages).
761 761  
762 762  **AT Command: AT+PDTA**
763 763  
759 +(% border="1" %)
764 764  |**Command Example**|**Response**
765 765  |(((
766 766  AT+PDTA=1,3
... ... @@ -809,14 +809,13 @@
809 809  
810 810  No downlink commands for feature
811 811  
808 +== 4.11 Print last few data entries. ==
812 812  
813 -
814 -== Print last few data entries. ==
815 -
816 816  Feature: Print the last few data entries
817 817  
818 818  **AT Command: AT+PLDTA**
819 819  
814 +(% border="1" %)
820 820  |**Command Example**|**Response**
821 821  |(((
822 822  AT+PLDTA=5
... ... @@ -846,14 +846,13 @@
846 846  
847 847  No downlink commands for feature
848 848  
844 +== 4.12 Clear Flash Record ==
849 849  
850 -
851 -== Clear Flash Record ==
852 -
853 853  Feature: Clear flash storage for data log feature.
854 854  
855 855  **AT Command: AT+CLRDTA**
856 856  
850 +(% border="1" %)
857 857  |**Command Example**|**Function**|**Response**
858 858  |AT+CLRDTA|Clear date record|(((
859 859  Clear all stored sensor data…
... ... @@ -865,36 +865,31 @@
865 865  
866 866  * Example: 0xA301 ~/~/Same as AT+CLRDTA
867 867  
862 += 5. Battery & How to replace =
868 868  
864 +== 5.1 Battery Type ==
869 869  
870 -= Battery & How to replace =
871 -
872 -== Battery Type ==
873 -
874 874  LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
875 875  
876 876  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
877 877  [[image:image-20220515075034-1.png||height="208" width="644"]]
878 878  
879 -
880 880  The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
881 881  
882 882  
883 -== Replace Battery ==
874 +== 5.2 Replace Battery ==
884 884  
885 885  LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
886 886  
887 887  [[image:image-20220515075440-2.png||height="338" width="272"]][[image:image-20220515075625-3.png||height="193" width="257"]]
888 888  
880 +== 5.3 Battery Life Analyze ==
889 889  
890 -== Battery Life Analyze ==
891 -
892 892  Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
893 893  https:~/~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf
894 894  
885 += 6. Order Info =
895 895  
896 -= Order Info =
897 -
898 898  Part Number: (% class="mark" %)**LHT65N-XX**
899 899  
900 900  **XX**: The default frequency band
... ... @@ -912,7 +912,7 @@
912 912  
913 913  * **E3**: External Temperature Probe
914 914  
915 -= Packing Info =
904 += 7. Packing Info =
916 916  
917 917  **Package Includes**:
918 918  
... ... @@ -927,10 +927,10 @@
927 927  * Package Size / pcs : 14.5 x 8 x 5 cm
928 928  * Weight / pcs : 170g
929 929  
930 -= FCC Warning =
919 += 8. FCC Warning =
931 931  
932 932  This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
933 933  
934 -(1) This device may not cause harmful interference, and
923 +(1) This device may not cause harmful interference
935 935  
936 -(2) this device must accept any interference received, including interference that may cause undesired operation
925 +(2) this device must accept any interference received, including interference that may cause undesired operation.
image-20220523111447-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +910.1 KB
Content
image-20220523112300-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.5 KB
Content
image-20220523115324-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +910.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0