Changes for page LHT52 - LoRaWAN Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/30 14:27
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 3 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -1,27 +1,47 @@ 1 -{{box cssClass="floatinginfobox" title="**Contents**"}} 1 +(% style="text-align:center" %) 2 +[[image:image-20220523115324-1.jpeg||height="500" width="500"]] 3 + 4 + 5 +**LHT65N LoRaWAN Temperature & Humidity Sensor Manual** 6 + 7 + 8 + 9 +**Table of Contents:** 10 + 2 2 {{toc/}} 3 -{{/box}} 4 4 5 -= Overview = 6 6 7 -[[image:LHT65N_10.png||alt="LHT65_Image" height="265" width="265"]] 8 8 15 += 1.Introduction = 9 9 10 - TheDraginoLHT65N Temperature & Humiditysensor is a Long Range LoRaWANSensor.It includes a(% class="mark" %) **built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% class="mark" %)**Temperature Sensor**(%%)**.**17 +== 1.1 What is LHT65N Temperature & Humidity Sensor == 11 11 19 +((( 20 +The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor**(%%)**.** 21 +))) 22 + 23 +((( 12 12 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on. 25 +))) 13 13 27 +((( 14 14 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*. 29 +))) 15 15 31 +((( 16 16 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway. 33 +))) 17 17 18 -LHT65N supports (% class="mark" %)Datalog Feature(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading. 35 +((( 36 +LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading. 37 +))) 19 19 39 +((( 20 20 *The actual battery life depends on how often to send data, please see the battery analyzer chapter. 41 +))) 21 21 43 +== 1.2 Features == 22 22 23 -== Features: == 24 - 25 25 * Wall mountable 26 26 * LoRaWAN v1.0.3 Class A protocol 27 27 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915 ... ... @@ -34,40 +34,73 @@ 34 34 * Tri-color LED to indicate working status 35 35 * Datalog feature 36 36 37 -== Specification :==57 +== 1.3 Specification == 38 38 59 +((( 39 39 **Built-in Temperature Sensor:** 61 +))) 40 40 41 -* Resolution: 0.01 °C 42 -* Accuracy Tolerance : Typ ±0.3 °C 43 -* Long Term Drift: < 0.02 °C/yr 44 -* Operating Range: -40 ~~ 85 °C 63 +* ((( 64 +Resolution: 0.01 °C 65 +))) 66 +* ((( 67 +Accuracy Tolerance : Typ ±0.3 °C 68 +))) 69 +* ((( 70 +Long Term Drift: < 0.02 °C/yr 71 +))) 72 +* ((( 73 +Operating Range: -40 ~~ 85 °C 74 +))) 45 45 76 +((( 46 46 **Built-in Humidity Sensor:** 78 +))) 47 47 48 -* Resolution: 0.04 %RH 49 -* Accuracy Tolerance : Typ ±3 %RH 50 -* Long Term Drift: < 0.02 °C/yr 51 -* Operating Range: 0 ~~ 96 %RH 80 +* ((( 81 +Resolution: 0.04 %RH 82 +))) 83 +* ((( 84 +Accuracy Tolerance : Typ ±3 %RH 85 +))) 86 +* ((( 87 +Long Term Drift: < 0.02 °C/yr 88 +))) 89 +* ((( 90 +Operating Range: 0 ~~ 96 %RH 91 +))) 52 52 93 +((( 53 53 **External Temperature Sensor:** 95 +))) 54 54 55 -* Resolution: 0.0625 °C 56 -* ±0.5°C accuracy from -10°C to +85°C 57 -* ±2°C accuracy from -55°C to +125°C 58 -* Operating Range: -55 °C ~~ 125 °C 97 +* ((( 98 +Resolution: 0.0625 °C 99 +))) 100 +* ((( 101 +±0.5°C accuracy from -10°C to +85°C 102 +))) 103 +* ((( 104 +±2°C accuracy from -55°C to +125°C 105 +))) 106 +* ((( 107 +Operating Range: -55 °C ~~ 125 °C 108 +))) 59 59 60 -= Connect LHT65N to IoT Server = 110 += 2. Connect LHT65N to IoT Server = 61 61 62 -== How does LHT65N work? == 112 +== 2.1 How does LHT65N work? == 63 63 114 +((( 64 64 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N. 116 +))) 65 65 118 +((( 66 66 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes. 120 +))) 67 67 122 +== 2.2 How to Activate LHT65N? == 68 68 69 -== How to Activate LHT65N? == 70 - 71 71 The LHT65N has two working modes: 72 72 73 73 * **Deep Sleep Mode**: LHT65N doesn’t have any LoRaWAN activation. This mode is used for storage and shipping to save battery life. ... ... @@ -77,12 +77,13 @@ 77 77 78 78 [[image:image-20220515123819-1.png||height="379" width="317"]] 79 79 133 +(% border="1" %) 80 80 |**Behavior on ACT**|**Function**|**Action** 81 81 |**Pressing ACT between 1s < time < 3s**|Test uplink status|If LHT65N is already Joined to the LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has an external sensor connected, blue led will blink once. If LHT65N has no external sensor, red led will blink once. 82 82 |**Pressing ACT for more than 3s**|Active Device|green led will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network. green led will solid turn on for 5 seconds after join in network. 83 83 |**Fast press ACT 5 times**|Deactivate Device|red led will solid on for 5 seconds. This means LHT65N is in Deep Sleep Mode. 84 84 85 -== Example to join LoRaWAN network == 139 +== 2.3 Example to join LoRaWAN network == 86 86 87 87 (% class="wikigeneratedid" %) 88 88 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure. ... ... @@ -93,7 +93,7 @@ 93 93 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3: 94 94 95 95 96 -=== **Step 1**: Create Device n TTN ===150 +=== 2.3.1 Step 1: Create Device n TTN === 97 97 98 98 Create a device in TTN V3 with the OTAA keys from LHT65N. 99 99 ... ... @@ -123,7 +123,7 @@ 123 123 [[image:image-20220522233118-7.png]] 124 124 125 125 126 -=== Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. === 180 +=== 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. === 127 127 128 128 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel. 129 129 ... ... @@ -130,7 +130,7 @@ 130 130 [[image:image-20220522233300-8.png]] 131 131 132 132 133 -== Uplink Payload :==187 +== 2.4 Uplink Payload == 134 134 135 135 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and(% class="mark" %) every 20 minutes(%%) send one uplink by default. 136 136 ... ... @@ -137,7 +137,7 @@ 137 137 After each uplink, the (% class="mark" %)BLUE LED(%%) will blink once. 138 138 139 139 140 -(% style="width:572px" %) 194 +(% border="1" style="width:572px" %) 141 141 |(% style="width:106px" %)**Size(bytes)**|(% style="width:71px" %)**2**|(% style="width:128px" %)**2**|(% style="width:103px" %)**2**|(% style="width:72px" %)**1**|(% style="width:89px" %)**4** 142 142 |(% style="width:106px" %)**Value**|(% style="width:71px" %)[[BAT>>path:#Battery]]|(% style="width:128px" %)((( 143 143 [[Built-In>>path:#SHT20_Temperature]] ... ... @@ -153,7 +153,7 @@ 153 153 * The 7th byte (EXT #): defines the external sensor model. 154 154 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won’t be these four bytes.) 155 155 156 -=== Decoder in TTN V3 === 210 +=== 2.4.1 Decoder in TTN V3 === 157 157 158 158 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading. 159 159 ... ... @@ -164,7 +164,7 @@ 164 164 [[image:image-20220522234118-10.png]] 165 165 166 166 167 -=== BAT-Battery Info === 221 +=== 2.4.2 BAT-Battery Info === 168 168 169 169 These two bytes of BAT include the battery state and the actually voltage 170 170 ... ... @@ -189,7 +189,7 @@ 189 189 * BAT status=(0Xcba4>>14)&0xFF=11(B),very good 190 190 * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV 191 191 192 -=== Built-in Temperature === 246 +=== 2.4.3 Built-in Temperature === 193 193 194 194 [[image:image-20220522235639-2.png]] 195 195 ... ... @@ -199,13 +199,13 @@ 199 199 200 200 * Temperature: (0xF5C6-65536)/100=-26.18℃ 201 201 202 -=== Built-in Humidity === 256 +=== 2.4.4 Built-in Humidity === 203 203 204 204 [[image:image-20220522235639-4.png]] 205 205 206 206 * Humidity: 0x025C/10=60.4% 207 207 208 -=== Ext # === 262 +=== 2.4.5 Ext # === 209 209 210 210 Bytes for External Sensor: 211 211 ... ... @@ -214,19 +214,16 @@ 214 214 |(% style="width:139px" %)0x01|(% style="width:484px" %)Sensor E3, Temperature Sensor 215 215 |(% style="width:139px" %)0x09|(% style="width:484px" %)Sensor E3, Temperature Sensor, Datalog Mod 216 216 217 -=== Ext value === 271 +=== 2.4.6 Ext value === 218 218 219 -==== Ext~=1, E3 Temperature Sensor ==== 273 +==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ==== 220 220 221 221 [[image:image-20220522235639-5.png]] 222 222 223 - 224 224 * DS18B20 temp=0x0ADD/100=27.81℃ 225 225 226 226 The last 2 bytes of data are meaningless 227 227 228 - 229 - 230 230 [[image:image-20220522235639-6.png]] 231 231 232 232 * External temperature= (0xF54F-65536)/100=-27.37℃ ... ... @@ -233,16 +233,15 @@ 233 233 234 234 The last 2 bytes of data are meaningless 235 235 236 - 237 237 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃ 238 238 239 239 240 -==== Ext~=9, E3 sensor with Unix Timestamp ==== 290 +==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ==== 241 241 242 242 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below: 243 243 244 244 245 -(% style="width:697px" %) 295 +(% border="1" style="width:697px" %) 246 246 |(% style="width:96px" %)**Size(bytes)**|(% style="width:164px" %)**2**|(% style="width:104px" %)**2**|(% style="width:106px" %)**2**|(% style="width:108px" %)**1**|(% style="width:116px" %)**4** 247 247 |(% style="width:96px" %)**Value**|(% style="width:164px" %)[[External temperature>>path:#DS18b20_value]]|(% style="width:104px" %)((( 248 248 [[Built-In>>path:#SHT20_Temperature]] ... ... @@ -260,9 +260,9 @@ 260 260 [[Time Stamp>>path:#Unix_Time_Stamp]] 261 261 ))) 262 262 263 -* **Battery status & **[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]] 313 +* **Battery status & **[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]] 264 264 265 -(% style="width:587px" %) 315 +(% border="1" style="width:587px" %) 266 266 |Bit(bit)|(% style="width:280px" %)[15:14]|(% style="width:136px" %)[11:0] 267 267 |Value|(% style="width:280px" %)((( 268 268 BAT Status ... ... @@ -282,7 +282,7 @@ 282 282 283 283 * **Status & Ext Byte** 284 284 285 -(% style="width:732px" %) 335 +(% border="1" style="width:732px" %) 286 286 |(% style="width:128px" %)**Bits**|(% style="width:102px" %)**7**|(% style="width:145px" %)**6**|(% style="width:117px" %)**5**|(% style="width:147px" %)**4**|(% style="width:90px" %)**[3:0]** 287 287 |(% style="width:128px" %)**Status & Ext**|(% style="width:102px" %)Not Defined|(% style="width:145px" %)Poll Message Flag|(% style="width:117px" %)Sync time OK|(% style="width:147px" %)Unix Time Request|(% style="width:90px" %)((( 288 288 Ext: ... ... @@ -294,11 +294,10 @@ 294 294 * Sync time OK: 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server. 295 295 * Unix Time Request:1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this) 296 296 297 -== Show data on Datacake == 347 +== 2.5 Show data on Datacake == 298 298 299 299 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps: 300 300 301 - 302 302 **Step 1**: Be sure that your device is programmed and properly connected to the LoRaWAN network. 303 303 304 304 **Step 2**: Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations. ... ... @@ -323,11 +323,11 @@ 323 323 [[image:image-20220523000825-10.png||height="432" width="762"]] 324 324 325 325 326 -== Datalog Feature == 375 +== 2.6 Datalog Feature == 327 327 328 328 This feature is always enabled. When user wants to retrieve the sensor value, he can send a poll command from the IoT platform to ask LHT65N to send the value in the required time slot. 329 329 330 -=== Unix TimeStamp === 379 +=== 2.6.1 Unix TimeStamp === 331 331 332 332 LHT65N uses Unix TimeStamp format based on 333 333 ... ... @@ -338,12 +338,12 @@ 338 338 339 339 Below is the converter example 340 340 341 -[[image:image-20220523001219-12.png||height="3 53" width="853"]]390 +[[image:image-20220523001219-12.png||height="302" width="730"]] 342 342 343 343 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 344 344 345 345 346 -=== Set Device Time === 395 +=== 2.6.2 Set Device Time === 347 347 348 348 There are two ways to set device’s time: 349 349 ... ... @@ -361,12 +361,12 @@ 361 361 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server. 362 362 363 363 364 -=== Poll sensor value === 413 +=== 2.6.3 Poll sensor value === 365 365 366 366 User can poll sensor value based on timestamps from the server. Below is the downlink command. 367 367 368 368 369 -(% style="width:454px" %) 418 +(% border="1" style="width:454px" %) 370 370 |(% style="width:69px" %)1byte|(% style="width:129px" %)4bytes|(% style="width:134px" %)4bytes|(% style="width:119px" %)1byte 371 371 |(% style="width:69px" %)31|(% style="width:129px" %)Timestamp start|(% style="width:134px" %)Timestamp end|(% style="width:119px" %)Uplink Interval 372 372 ... ... @@ -380,7 +380,7 @@ 380 380 Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s. 381 381 382 382 383 -=== Datalog Uplink payload === 432 +=== 2.6.4 Datalog Uplink payload === 384 384 385 385 The Datalog poll reply uplink will use below payload format. 386 386 ... ... @@ -387,6 +387,7 @@ 387 387 388 388 Retrieval data payload 389 389 439 +(% border="1" %) 390 390 |**Size(bytes)**|**2**|**2**|**2**|**1**|**4** 391 391 |**Value**|[[External sensor data>>path:#Extension_sensor_value]]|((( 392 392 [[Built-In>>path:#SHT20_Temperature]] ... ... @@ -405,6 +405,7 @@ 405 405 Poll message flag & Ext 406 406 407 407 458 +(% border="1" %) 408 408 |**Bits**|**7**|**6**|**5**|**4**|**[3:0]** 409 409 |**Status & Ext**|Not Defined|Poll Message Flag|Sync time OK|Unix Time Request|((( 410 410 Ext: ... ... @@ -464,7 +464,7 @@ 464 464 465 465 LHT65N will uplink this payload. 466 466 467 -[[image:image-20220523001219-13.png]] 518 +[[image:image-20220523001219-13.png||height="421" width="727"]] 468 468 469 469 7FFF089801464160065F977FFF088E014B41600660097FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E 470 470 ... ... @@ -483,7 +483,7 @@ 483 483 Unix time is 0x60065F97=1611030423s=21/1/19 04:27:03 484 484 485 485 486 -== Alarm Mode == 537 +== 2.7 Alarm Mode == 487 487 488 488 Alarm mode feature is added since firmware v1.5. When device is in Alarm mode, it will check the built-in sensor temperature in a short interval. If the temperature exceeds the pre-configure range, it will send an uplink immediately. 489 489 ... ... @@ -499,7 +499,7 @@ 499 499 500 500 501 501 502 -== LED Indicator == 553 +== 2.8 LED Indicator == 503 503 504 504 The LHT65N has a triple color LED which for easy shows different stage. 505 505 ... ... @@ -514,17 +514,14 @@ 514 514 515 515 ---- 516 516 517 -== Installation == 568 +== 2.9 Installation == 518 518 519 519 [[image:image-20220516231650-1.png||height="436" width="428"]] 520 520 572 += 3. Sensors & Accessories = 521 521 574 +== 3.1 E3 Temperature Probe == 522 522 523 - 524 -= Sensors & Accessories = 525 - 526 -== E3 Temperature Probe == 527 - 528 528 [[image:image-20220515080154-4.png||height="182" width="161"]] [[image:image-20220515080330-5.png||height="201" width="195"]] 529 529 530 530 ... ... @@ -537,7 +537,7 @@ 537 537 * -55°C to 125°C 538 538 * Working voltage 2.35v ~~ 5v 539 539 540 -= Configure LHT65N via AT Command or LoRaWAN Downlink = 588 += 4. Configure LHT65N via AT Command or LoRaWAN Downlink = 541 541 542 542 Use can configure LHT65N via AT Command or LoRaWAN Downlink. 543 543 ... ... @@ -546,7 +546,6 @@ 546 546 547 547 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]] 548 548 549 - 550 550 There are two kinds of commands to configure LHT65N, they are: 551 551 552 552 * **General Commands**. ... ... @@ -560,19 +560,17 @@ 560 560 561 561 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]] 562 562 563 - 564 - 565 565 * **Commands special design for LHT65N** 566 566 567 567 These commands are only valid for LHT65N, as below: 568 568 614 +== 4.1 Set Transmit Interval Time == 569 569 570 -== Set Transmit Interval Time == 571 - 572 572 Feature: Change LoRaWAN End Node Transmit Interval. 573 573 574 574 **AT Command: AT+TDC** 575 575 620 +(% border="1" %) 576 576 |**Command Example**|**Function**|**Response** 577 577 |AT+TDC?|Show current transmit Interval|((( 578 578 30000 ... ... @@ -587,7 +587,6 @@ 587 587 Set transmit interval to 60000ms = 60 seconds 588 588 ))) 589 589 590 - 591 591 **Downlink Command: 0x01** 592 592 593 593 Format: Command Code (0x01) followed by 3 bytes time value. ... ... @@ -597,13 +597,13 @@ 597 597 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 598 598 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 599 599 644 +== 4.2 Set External Sensor Mode == 600 600 601 -== Set External Sensor Mode == 602 - 603 603 Feature: Change External Sensor Mode. 604 604 605 605 **AT Command: AT+EXT** 606 606 650 +(% border="1" %) 607 607 |**Command Example**|**Function**|**Response** 608 608 |AT+EXT?|Get current external sensor mode|((( 609 609 1 ... ... @@ -615,7 +615,6 @@ 615 615 |AT+EXT=1|(% colspan="2" %)Set external sensor mode to 1 616 616 |AT+EXT=9|(% colspan="2" %)Set to external DS18B20 with timestamp 617 617 618 - 619 619 **Downlink Command: 0xA2** 620 620 621 621 Total bytes: 2 ~~ 5 bytes ... ... @@ -626,9 +626,8 @@ 626 626 * 0xA209: Same as AT+EXT=9 627 627 * 0xA20702003c,Same as AT+SETCNT=60 628 628 672 +== 4.3 Enable/Disable uplink Temperature probe ID == 629 629 630 -== Enable/Disable uplink Temperature probe ID == 631 - 632 632 Feature: If PID is enabled, device will send the temperature probe ID on: 633 633 634 634 * First Packet after OTAA Join ... ... @@ -639,23 +639,22 @@ 639 639 640 640 **AT Command:** 641 641 684 +(% border="1" %) 642 642 |**Command Example**|**Function**|**Response** 643 643 |AT+PID=1|Enable PID uplink|OK 644 644 645 - 646 646 **Downlink Command:** 647 647 648 648 * 0xA800 à AT+PID=0 649 649 * 0xA801 à AT+PID=1 650 650 693 +== 4.4 Set Password == 651 651 652 - 653 -== Set Password == 654 - 655 655 Feature: Set device password, max 9 digits 656 656 657 657 **AT Command: AT+PWORD** 658 658 699 +(% border="1" %) 659 659 |**Command Example**|**Function**|**Response** 660 660 |AT+PWORD=?|Show password|((( 661 661 123456 ... ... @@ -665,33 +665,32 @@ 665 665 ))) 666 666 |AT+PWORD=999999|Set password|OK 667 667 668 - 669 669 **Downlink Command:** 670 670 671 671 No downlink command for this feature. 672 672 713 +== 4.5 Quit AT Command == 673 673 674 -== Quit AT Command == 675 - 676 676 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands. 677 677 678 678 **AT Command: AT+DISAT** 679 679 719 +(% border="1" %) 680 680 |**Command Example**|**Function**|**Response** 681 681 |AT+DISAT|Quit AT Commands mode|OK 682 682 683 - 684 684 **Downlink Command:** 685 685 686 686 No downlink command for this feature. 687 687 688 688 689 -== Set to sleep mode == 728 +== 4.6 Set to sleep mode == 690 690 691 691 Feature: Set device to sleep mode 692 692 693 693 **AT Command: AT+SLEEP** 694 694 734 +(% border="1" %) 695 695 | | | 696 696 |**Command Example**|**Function**|**Response** 697 697 |AT+SLEEP|Set to sleep mode|((( ... ... @@ -700,19 +700,17 @@ 700 700 OK 701 701 ))) 702 702 703 - 704 704 **Downlink Command:** 705 705 706 706 * There is no downlink command to set to Sleep mode. 707 707 747 +== 4.7 Set system time == 708 708 709 - 710 -== Set system time == 711 - 712 712 Feature: Set system time, unix format. [[See here for format detail.>>path:#TimeStamp]] 713 713 714 714 **AT Command:** 715 715 753 +(% border="1" %) 716 716 |**Command Example**|**Function** 717 717 |AT+TIMESTAMP=1611104352|((( 718 718 OK ... ... @@ -720,17 +720,14 @@ 720 720 Set System time to 2021-01-20 00:59:12 721 721 ))) 722 722 723 - 724 724 **Downlink Command:** 725 725 726 726 0x306007806000 ~/~/ Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352 727 727 765 +== 4.8 Set Time Sync Mode == 728 728 729 -== Set Time Sync Mode == 730 - 731 731 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command. 732 732 733 - 734 734 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0. 735 735 736 736 ... ... @@ -739,7 +739,6 @@ 739 739 |**Command Example**|**Function** 740 740 |AT+SYNCMOD=1|Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq) 741 741 742 - 743 743 **Downlink Command:** 744 744 745 745 0x28 01 ~/~/ Same As AT+SYNCMOD=1 ... ... @@ -746,28 +746,27 @@ 746 746 747 747 0x28 00 ~/~/ Same As AT+SYNCMOD=0 748 748 783 +== 4.9 Set Time Sync Interval == 749 749 750 -== Set Time Sync Interval == 751 - 752 752 Feature: Define System time sync interval. SYNCTDC default value: 10 days. 753 753 754 754 **AT Command:** 755 755 789 +(% border="1" %) 756 756 |**Command Example**|**Function** 757 757 |AT+SYNCTDC=0x0A|Set SYNCTDC to 10 (0x0A), so the sync time is 10 days. 758 758 759 - 760 760 **Downlink Command:** 761 761 762 762 0x29 0A ~/~/ Same as AT+SYNCTDC=0x0A 763 763 797 +== 4.10 Print data entries base on page. == 764 764 765 -== Print data entries base on page. == 766 - 767 767 Feature: Print the sector data from start page to stop page (max is 416 pages). 768 768 769 769 **AT Command: AT+PDTA** 770 770 803 +(% border="1" %) 771 771 |**Command Example**|**Response** 772 772 |((( 773 773 AT+PDTA=1,3 ... ... @@ -812,19 +812,17 @@ 812 812 OK 813 813 ))) 814 814 815 - 816 816 **Downlink Command:** 817 817 818 818 No downlink commands for feature 819 819 852 +== 4.11 Print last few data entries. == 820 820 821 - 822 -== Print last few data entries. == 823 - 824 824 Feature: Print the last few data entries 825 825 826 826 **AT Command: AT+PLDTA** 827 827 858 +(% border="1" %) 828 828 |**Command Example**|**Response** 829 829 |((( 830 830 AT+PLDTA=5 ... ... @@ -850,19 +850,17 @@ 850 850 OK 851 851 ))) 852 852 853 - 854 854 **Downlink Command:** 855 855 856 856 No downlink commands for feature 857 857 888 +== 4.12 Clear Flash Record == 858 858 859 - 860 -== Clear Flash Record == 861 - 862 862 Feature: Clear flash storage for data log feature. 863 863 864 864 **AT Command: AT+CLRDTA** 865 865 894 +(% border="1" %) 866 866 |**Command Example**|**Function**|**Response** 867 867 |AT+CLRDTA|Clear date record|((( 868 868 Clear all stored sensor data… ... ... @@ -870,42 +870,35 @@ 870 870 OK 871 871 ))) 872 872 873 - 874 874 **Downlink Command: 0xA3** 875 875 876 876 * Example: 0xA301 ~/~/Same as AT+CLRDTA 877 877 906 += 5. Battery & How to replace = 878 878 908 +== 5.1 Battery Type == 879 879 880 - 881 -= Battery & How to replace = 882 - 883 -== Battery Type == 884 - 885 885 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters. 886 886 887 887 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 888 888 [[image:image-20220515075034-1.png||height="208" width="644"]] 889 889 890 - 891 891 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery. 892 892 893 893 894 -== Replace Battery == 918 +== 5.2 Replace Battery == 895 895 896 896 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok. 897 897 898 898 [[image:image-20220515075440-2.png||height="338" width="272"]][[image:image-20220515075625-3.png||height="193" width="257"]] 899 899 924 +== 5.3 Battery Life Analyze == 900 900 901 -== Battery Life Analyze == 902 - 903 903 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life: 904 904 https:~/~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf 905 905 929 += 6. Order Info = 906 906 907 -= Order Info = 908 - 909 909 Part Number: (% class="mark" %)**LHT65N-XX** 910 910 911 911 **XX**: The default frequency band ... ... @@ -923,7 +923,7 @@ 923 923 924 924 * **E3**: External Temperature Probe 925 925 926 -= Packing Info = 948 += 7. Packing Info = 927 927 928 928 **Package Includes**: 929 929 ... ... @@ -938,10 +938,10 @@ 938 938 * Package Size / pcs : 14.5 x 8 x 5 cm 939 939 * Weight / pcs : 170g 940 940 941 -= FCC Warning = 963 += 8. FCC Warning = 942 942 943 943 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions: 944 944 945 -(1) This device may not cause harmful interference , and967 +(1) This device may not cause harmful interference; 946 946 947 -(2) this device must accept any interference received, including interference that may cause undesired operation 969 +(2) this device must accept any interference received, including interference that may cause undesired operation.
- image-20220523111447-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +910.1 KB - Content
- image-20220523112300-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.5 KB - Content
- image-20220523115324-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +910.1 KB - Content