<
From version < 52.1 >
edited by Edwin Chen
on 2022/05/23 00:35
To version < 56.2 >
edited by Xiaoling
on 2022/05/23 11:58
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -1,14 +1,24 @@
1 -{{box cssClass="floatinginfobox" title="**Contents**"}}
1 +(% style="text-align:center" %)
2 +[[image:image-20220523115324-1.jpeg||height="500" width="500"]]
3 +
4 +
5 +**LHT65N LoRaWAN Temperature & Humidity Sensor Manual**
6 +
7 +
8 +
9 +**Table of Contents:**
10 +
2 2  {{toc/}}
3 -{{/box}}
4 4  
5 -= Overview =
6 6  
7 -[[image:LHT65N_10.png||alt="LHT65_Image" height="265" width="265"]]
8 8  
15 += 1.Introduction =
9 9  
10 -The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a(% class="mark" %) **built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% class="mark" %)**Temperature Sensor**(%%)**.**
17 +== 1.1 What is LHT65N Temperature & Humidity Sensor ==
11 11  
19 +
20 +The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a (% style="color:#4f81bd" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:#4f81bd" %)**Temperature Sensor**(%%)**.**
21 +
12 12  The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
13 13  
14 14  LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
... ... @@ -15,13 +15,12 @@
15 15  
16 16  LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
17 17  
18 -LHT65N supports (% class="mark" %)Datalog Feature(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
28 +LHT65N supports (% style="color:#4f81bd" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
19 19  
20 20  *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
21 21  
32 +== 1.2 Features ==
22 22  
23 -== Features: ==
24 -
25 25  * Wall mountable
26 26  * LoRaWAN v1.0.3 Class A protocol
27 27  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
... ... @@ -34,7 +34,7 @@
34 34  * Tri-color LED to indicate working status
35 35  * Datalog feature
36 36  
37 -== Specification: ==
46 +== 1.3 Specification ==
38 38  
39 39  **Built-in Temperature Sensor:**
40 40  
... ... @@ -57,9 +57,9 @@
57 57  * ±2°C accuracy from -55°C to +125°C
58 58  * Operating Range: -55 °C ~~ 125 °C
59 59  
60 -= Connect LHT65N to IoT Server =
69 += 2. Connect LHT65N to IoT Server =
61 61  
62 -== How does LHT65N work? ==
71 +== 2.1 How does LHT65N work? ==
63 63  
64 64  LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
65 65  
... ... @@ -66,7 +66,7 @@
66 66  If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
67 67  
68 68  
69 -== How to Activate LHT65N? ==
78 +== 2.2 How to Activate LHT65N? ==
70 70  
71 71  The LHT65N has two working modes:
72 72  
... ... @@ -77,12 +77,13 @@
77 77  
78 78  [[image:image-20220515123819-1.png||height="379" width="317"]]
79 79  
89 +(% border="1" %)
80 80  |**Behavior on ACT**|**Function**|**Action**
81 81  |**Pressing ACT between 1s < time < 3s**|Test uplink status|If LHT65N is already Joined to the LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has an external sensor connected, blue led will blink once. If LHT65N has no external sensor, red led will blink once.
82 82  |**Pressing ACT for more than 3s**|Active Device|green led will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network. green led will solid turn on for 5 seconds after join in network.
83 83  |**Fast press ACT 5 times**|Deactivate Device|red led will solid on for 5 seconds. This means LHT65N is in Deep Sleep Mode.
84 84  
85 -== Example to join LoRaWAN network ==
95 +== 2.3 Example to join LoRaWAN network ==
86 86  
87 87  (% class="wikigeneratedid" %)
88 88  This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
... ... @@ -93,7 +93,7 @@
93 93  Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
94 94  
95 95  
96 -=== **Step 1**: Create Device n TTN ===
106 +=== 2.3.1 Step 1: Create Device n TTN ===
97 97  
98 98  Create a device in TTN V3 with the OTAA keys from LHT65N.
99 99  
... ... @@ -123,7 +123,7 @@
123 123  [[image:image-20220522233118-7.png]]
124 124  
125 125  
126 -=== Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
136 +=== 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
127 127  
128 128  Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
129 129  
... ... @@ -130,7 +130,7 @@
130 130  [[image:image-20220522233300-8.png]]
131 131  
132 132  
133 -== Uplink Payload: ==
143 +== 2.4 Uplink Payload ==
134 134  
135 135  The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and(% class="mark" %) every 20 minutes(%%) send one uplink by default.
136 136  
... ... @@ -137,7 +137,7 @@
137 137  After each uplink, the (% class="mark" %)BLUE LED(%%) will blink once.
138 138  
139 139  
140 -(% style="width:572px" %)
150 +(% border="1" style="width:572px" %)
141 141  |(% style="width:106px" %)**Size(bytes)**|(% style="width:71px" %)**2**|(% style="width:128px" %)**2**|(% style="width:103px" %)**2**|(% style="width:72px" %)**1**|(% style="width:89px" %)**4**
142 142  |(% style="width:106px" %)**Value**|(% style="width:71px" %)[[BAT>>path:#Battery]]|(% style="width:128px" %)(((
143 143  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -153,7 +153,7 @@
153 153  * The 7th byte (EXT #): defines the external sensor model.
154 154  * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won’t be these four bytes.)
155 155  
156 -=== Decoder in TTN V3 ===
166 +=== 2.4.1 Decoder in TTN V3 ===
157 157  
158 158  When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
159 159  
... ... @@ -164,7 +164,7 @@
164 164  [[image:image-20220522234118-10.png]]
165 165  
166 166  
167 -=== BAT-Battery Info ===
177 +=== 2.4.2 BAT-Battery Info ===
168 168  
169 169  These two bytes of BAT include the battery state and the actually voltage
170 170  
... ... @@ -189,7 +189,7 @@
189 189  * BAT status=(0Xcba4>>14)&0xFF=11(B),very good
190 190  * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV
191 191  
192 -=== Built-in Temperature ===
202 +=== 2.4.3 Built-in Temperature ===
193 193  
194 194  [[image:image-20220522235639-2.png]]
195 195  
... ... @@ -199,13 +199,13 @@
199 199  
200 200  * Temperature:  (0xF5C6-65536)/100=-26.18℃
201 201  
202 -=== Built-in Humidity ===
212 +=== 2.4.4 Built-in Humidity ===
203 203  
204 204  [[image:image-20220522235639-4.png]]
205 205  
206 206  * Humidity:    0x025C/10=60.4%
207 207  
208 -=== Ext # ===
218 +=== 2.4.5 Ext # ===
209 209  
210 210  Bytes for External Sensor:
211 211  
... ... @@ -214,19 +214,16 @@
214 214  |(% style="width:139px" %)0x01|(% style="width:484px" %)Sensor E3, Temperature Sensor
215 215  |(% style="width:139px" %)0x09|(% style="width:484px" %)Sensor E3, Temperature Sensor, Datalog Mod
216 216  
217 -=== Ext value ===
227 +=== 2.4.6 Ext value ===
218 218  
219 -==== Ext~=1, E3 Temperature Sensor ====
229 +==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
220 220  
221 221  [[image:image-20220522235639-5.png]]
222 222  
223 -
224 224  * DS18B20 temp=0x0ADD/100=27.81℃
225 225  
226 226  The last 2 bytes of data are meaningless
227 227  
228 -
229 -
230 230  [[image:image-20220522235639-6.png]]
231 231  
232 232  * External temperature= (0xF54F-65536)/100=-27.37℃
... ... @@ -233,16 +233,15 @@
233 233  
234 234  The last 2 bytes of data are meaningless
235 235  
236 -
237 237  If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
238 238  
239 239  
240 -==== Ext~=9, E3 sensor with Unix Timestamp ====
246 +==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
241 241  
242 242  Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
243 243  
244 244  
245 -(% style="width:697px" %)
251 +(% border="1" style="width:697px" %)
246 246  |(% style="width:96px" %)**Size(bytes)**|(% style="width:164px" %)**2**|(% style="width:104px" %)**2**|(% style="width:106px" %)**2**|(% style="width:108px" %)**1**|(% style="width:116px" %)**4**
247 247  |(% style="width:96px" %)**Value**|(% style="width:164px" %)[[External temperature>>path:#DS18b20_value]]|(% style="width:104px" %)(((
248 248  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -260,9 +260,9 @@
260 260  [[Time Stamp>>path:#Unix_Time_Stamp]]
261 261  )))
262 262  
263 -* **Battery status & **[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]]
269 +* **Battery status & **[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]]
264 264  
265 -(% style="width:587px" %)
271 +(% border="1" style="width:587px" %)
266 266  |Bit(bit)|(% style="width:280px" %)[15:14]|(% style="width:136px" %)[11:0]
267 267  |Value|(% style="width:280px" %)(((
268 268  BAT Status
... ... @@ -282,7 +282,7 @@
282 282  
283 283  * **Status & Ext Byte**
284 284  
285 -(% style="width:732px" %)
291 +(% border="1" style="width:732px" %)
286 286  |(% style="width:128px" %)**Bits**|(% style="width:102px" %)**7**|(% style="width:145px" %)**6**|(% style="width:117px" %)**5**|(% style="width:147px" %)**4**|(% style="width:90px" %)**[3:0]**
287 287  |(% style="width:128px" %)**Status & Ext**|(% style="width:102px" %)Not Defined|(% style="width:145px" %)Poll Message Flag|(% style="width:117px" %)Sync time OK|(% style="width:147px" %)Unix Time Request|(% style="width:90px" %)(((
288 288  Ext:
... ... @@ -294,11 +294,10 @@
294 294  * Sync time OK: 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
295 295  * Unix Time Request:1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
296 296  
297 -== Show data on Datacake ==
303 +== 2.5 Show data on Datacake ==
298 298  
299 299  Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
300 300  
301 -
302 302  **Step 1**: Be sure that your device is programmed and properly connected to the LoRaWAN network.
303 303  
304 304  **Step 2**: Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
... ... @@ -323,11 +323,11 @@
323 323  [[image:image-20220523000825-10.png||height="432" width="762"]]
324 324  
325 325  
326 -== Datalog Feature ==
331 +== 2.6 Datalog Feature ==
327 327  
328 328  This feature is always enabled. When user wants to retrieve the sensor value, he can send a poll command from the IoT platform to ask LHT65N to send the value in the required time slot.
329 329  
330 -=== Unix TimeStamp ===
335 +=== 2.6.1 Unix TimeStamp ===
331 331  
332 332  LHT65N uses Unix TimeStamp format based on
333 333  
... ... @@ -338,12 +338,12 @@
338 338  
339 339  Below is the converter example
340 340  
341 -[[image:image-20220523001219-12.png||height="353" width="853"]]
346 +[[image:image-20220523001219-12.png||height="302" width="730"]]
342 342  
343 343  So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
344 344  
345 345  
346 -=== Set Device Time ===
351 +=== 2.6.2 Set Device Time ===
347 347  
348 348  There are two ways to set device’s time:
349 349  
... ... @@ -361,12 +361,12 @@
361 361  User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
362 362  
363 363  
364 -=== Poll sensor value ===
369 +=== 2.6.3 Poll sensor value ===
365 365  
366 366  User can poll sensor value based on timestamps from the server. Below is the downlink command.
367 367  
368 368  
369 -(% style="width:454px" %)
374 +(% border="1" style="width:454px" %)
370 370  |(% style="width:69px" %)1byte|(% style="width:129px" %)4bytes|(% style="width:134px" %)4bytes|(% style="width:119px" %)1byte
371 371  |(% style="width:69px" %)31|(% style="width:129px" %)Timestamp start|(% style="width:134px" %)Timestamp end|(% style="width:119px" %)Uplink Interval
372 372  
... ... @@ -380,7 +380,7 @@
380 380  Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s.
381 381  
382 382  
383 -=== Datalog Uplink payload ===
388 +=== 2.6.4 Datalog Uplink payload ===
384 384  
385 385  The Datalog poll reply uplink will use below payload format.
386 386  
... ... @@ -387,6 +387,7 @@
387 387  
388 388  Retrieval data payload
389 389  
395 +(% border="1" %)
390 390  |**Size(bytes)**|**2**|**2**|**2**|**1**|**4**
391 391  |**Value**|[[External sensor data>>path:#Extension_sensor_value]]|(((
392 392  [[Built-In>>path:#SHT20_Temperature]]
... ... @@ -405,6 +405,7 @@
405 405  Poll message flag & Ext
406 406  
407 407  
414 +(% border="1" %)
408 408  |**Bits**|**7**|**6**|**5**|**4**|**[3:0]**
409 409  |**Status & Ext**|Not Defined|Poll Message Flag|Sync time OK|Unix Time Request|(((
410 410  Ext:
... ... @@ -464,7 +464,7 @@
464 464  
465 465  LHT65N will uplink this payload.
466 466  
467 -[[image:image-20220523001219-13.png]]
474 +[[image:image-20220523001219-13.png||height="421" width="727"]]
468 468  
469 469  7FFF089801464160065F977FFF088E014B41600660097FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
470 470  
... ... @@ -483,7 +483,7 @@
483 483  Unix time is 0x60065F97=1611030423s=21/1/19 04:27:03
484 484  
485 485  
486 -== Alarm Mode ==
493 +== 2.7 Alarm Mode ==
487 487  
488 488  Alarm mode feature is added since firmware v1.5. When device is in Alarm mode, it will check the built-in sensor temperature in a short interval. If the temperature exceeds the pre-configure range, it will send an uplink immediately.
489 489  
... ... @@ -499,7 +499,7 @@
499 499  
500 500  
501 501  
502 -== LED Indicator ==
509 +== 2.8 LED Indicator ==
503 503  
504 504  The LHT65N has a triple color LED which for easy shows different stage.
505 505  
... ... @@ -514,17 +514,14 @@
514 514  
515 515  ----
516 516  
517 -== Installation ==
524 +== 2.9 Installation ==
518 518  
519 519  [[image:image-20220516231650-1.png||height="436" width="428"]]
520 520  
528 += 3. Sensors & Accessories =
521 521  
530 +== 3.1 E3 Temperature Probe ==
522 522  
523 -
524 -= Sensors & Accessories =
525 -
526 -== E3 Temperature Probe ==
527 -
528 528  [[image:image-20220515080154-4.png||height="182" width="161"]] [[image:image-20220515080330-5.png||height="201" width="195"]]
529 529  
530 530  
... ... @@ -537,7 +537,7 @@
537 537  * -55°C to 125°C
538 538  * Working voltage 2.35v ~~ 5v
539 539  
540 -= Configure LHT65N via AT Command or LoRaWAN Downlink =
544 += 4. Configure LHT65N via AT Command or LoRaWAN Downlink =
541 541  
542 542  Use can configure LHT65N via AT Command or LoRaWAN Downlink.
543 543  
... ... @@ -546,7 +546,6 @@
546 546  
547 547  [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
548 548  
549 -
550 550  There are two kinds of commands to configure LHT65N, they are:
551 551  
552 552  * **General Commands**.
... ... @@ -560,19 +560,17 @@
560 560  
561 561  [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
562 562  
563 -
564 -
565 565  * **Commands special design for LHT65N**
566 566  
567 567  These commands are only valid for LHT65N, as below:
568 568  
570 +== 4.1 Set Transmit Interval Time ==
569 569  
570 -== Set Transmit Interval Time ==
571 -
572 572  Feature: Change LoRaWAN End Node Transmit Interval.
573 573  
574 574  **AT Command: AT+TDC**
575 575  
576 +(% border="1" %)
576 576  |**Command Example**|**Function**|**Response**
577 577  |AT+TDC?|Show current transmit Interval|(((
578 578  30000
... ... @@ -587,7 +587,6 @@
587 587  Set transmit interval to 60000ms = 60 seconds
588 588  )))
589 589  
590 -
591 591  **Downlink Command: 0x01**
592 592  
593 593  Format: Command Code (0x01) followed by 3 bytes time value.
... ... @@ -597,13 +597,13 @@
597 597  * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
598 598  * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
599 599  
600 +== 4.2 Set External Sensor Mode ==
600 600  
601 -== Set External Sensor Mode ==
602 -
603 603  Feature: Change External Sensor Mode.
604 604  
605 605  **AT Command: AT+EXT**
606 606  
606 +(% border="1" %)
607 607  |**Command Example**|**Function**|**Response**
608 608  |AT+EXT?|Get current external sensor mode|(((
609 609  1
... ... @@ -615,7 +615,6 @@
615 615  |AT+EXT=1|(% colspan="2" %)Set external sensor mode to 1
616 616  |AT+EXT=9|(% colspan="2" %)Set to external DS18B20 with timestamp
617 617  
618 -
619 619  **Downlink Command: 0xA2**
620 620  
621 621  Total bytes: 2 ~~ 5 bytes
... ... @@ -626,9 +626,8 @@
626 626  * 0xA209: Same as AT+EXT=9
627 627  * 0xA20702003c,Same as AT+SETCNT=60
628 628  
628 +== 4.3 Enable/Disable uplink Temperature probe ID ==
629 629  
630 -== Enable/Disable uplink Temperature probe ID ==
631 -
632 632  Feature: If PID is enabled, device will send the temperature probe ID on:
633 633  
634 634  * First Packet after OTAA Join
... ... @@ -639,23 +639,22 @@
639 639  
640 640  **AT Command:**
641 641  
640 +(% border="1" %)
642 642  |**Command Example**|**Function**|**Response**
643 643  |AT+PID=1|Enable PID uplink|OK
644 644  
645 -
646 646  **Downlink Command:**
647 647  
648 648  * 0xA800     à AT+PID=0
649 649  * 0xA801     à AT+PID=1
650 650  
649 +== 4.4 Set Password ==
651 651  
652 -
653 -== Set Password ==
654 -
655 655  Feature: Set device password, max 9 digits
656 656  
657 657  **AT Command: AT+PWORD**
658 658  
655 +(% border="1" %)
659 659  |**Command Example**|**Function**|**Response**
660 660  |AT+PWORD=?|Show password|(((
661 661  123456
... ... @@ -665,33 +665,32 @@
665 665  )))
666 666  |AT+PWORD=999999|Set password|OK
667 667  
668 -
669 669  **Downlink Command:**
670 670  
671 671  No downlink command for this feature.
672 672  
669 +== 4.5 Quit AT Command ==
673 673  
674 -== Quit AT Command ==
675 -
676 676  Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
677 677  
678 678  **AT Command: AT+DISAT**
679 679  
675 +(% border="1" %)
680 680  |**Command Example**|**Function**|**Response**
681 681  |AT+DISAT|Quit AT Commands mode|OK
682 682  
683 -
684 684  **Downlink Command:**
685 685  
686 686  No downlink command for this feature.
687 687  
688 688  
689 -== Set to sleep mode ==
684 +== 4.6 Set to sleep mode ==
690 690  
691 691  Feature: Set device to sleep mode
692 692  
693 693  **AT Command: AT+SLEEP**
694 694  
690 +(% border="1" %)
695 695  | | |
696 696  |**Command Example**|**Function**|**Response**
697 697  |AT+SLEEP|Set to sleep mode|(((
... ... @@ -700,19 +700,17 @@
700 700  OK
701 701  )))
702 702  
703 -
704 704  **Downlink Command:**
705 705  
706 706  * There is no downlink command to set to Sleep mode.
707 707  
703 +== 4.7 Set system time ==
708 708  
709 -
710 -== Set system time ==
711 -
712 712  Feature: Set system time, unix format. [[See here for format detail.>>path:#TimeStamp]]
713 713  
714 714  **AT Command:**
715 715  
709 +(% border="1" %)
716 716  |**Command Example**|**Function**
717 717  |AT+TIMESTAMP=1611104352|(((
718 718  OK
... ... @@ -720,17 +720,14 @@
720 720  Set System time to 2021-01-20 00:59:12
721 721  )))
722 722  
723 -
724 724  **Downlink Command:**
725 725  
726 726  0x306007806000 ~/~/ Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
727 727  
721 +== 4.8 Set Time Sync Mode ==
728 728  
729 -== Set Time Sync Mode ==
730 -
731 731  Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
732 732  
733 -
734 734  SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
735 735  
736 736  
... ... @@ -739,7 +739,6 @@
739 739  |**Command Example**|**Function**
740 740  |AT+SYNCMOD=1|Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
741 741  
742 -
743 743  **Downlink Command:**
744 744  
745 745  0x28 01 ~/~/ Same As AT+SYNCMOD=1
... ... @@ -746,28 +746,27 @@
746 746  
747 747  0x28 00 ~/~/ Same As AT+SYNCMOD=0
748 748  
739 +== 4.9 Set Time Sync Interval ==
749 749  
750 -== Set Time Sync Interval ==
751 -
752 752  Feature: Define System time sync interval. SYNCTDC default value: 10 days.
753 753  
754 754  **AT Command:**
755 755  
745 +(% border="1" %)
756 756  |**Command Example**|**Function**
757 757  |AT+SYNCTDC=0x0A|Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
758 758  
759 -
760 760  **Downlink Command:**
761 761  
762 762  0x29 0A ~/~/ Same as AT+SYNCTDC=0x0A
763 763  
753 +== 4.10 Print data entries base on page. ==
764 764  
765 -== Print data entries base on page. ==
766 -
767 767  Feature: Print the sector data from start page to stop page (max is 416 pages).
768 768  
769 769  **AT Command: AT+PDTA**
770 770  
759 +(% border="1" %)
771 771  |**Command Example**|**Response**
772 772  |(((
773 773  AT+PDTA=1,3
... ... @@ -812,19 +812,17 @@
812 812  OK
813 813  )))
814 814  
815 -
816 816  **Downlink Command:**
817 817  
818 818  No downlink commands for feature
819 819  
808 +== 4.11 Print last few data entries. ==
820 820  
821 -
822 -== Print last few data entries. ==
823 -
824 824  Feature: Print the last few data entries
825 825  
826 826  **AT Command: AT+PLDTA**
827 827  
814 +(% border="1" %)
828 828  |**Command Example**|**Response**
829 829  |(((
830 830  AT+PLDTA=5
... ... @@ -850,19 +850,17 @@
850 850  OK
851 851  )))
852 852  
853 -
854 854  **Downlink Command:**
855 855  
856 856  No downlink commands for feature
857 857  
844 +== 4.12 Clear Flash Record ==
858 858  
859 -
860 -== Clear Flash Record ==
861 -
862 862  Feature: Clear flash storage for data log feature.
863 863  
864 864  **AT Command: AT+CLRDTA**
865 865  
850 +(% border="1" %)
866 866  |**Command Example**|**Function**|**Response**
867 867  |AT+CLRDTA|Clear date record|(((
868 868  Clear all stored sensor data…
... ... @@ -870,42 +870,35 @@
870 870  OK
871 871  )))
872 872  
873 -
874 874  **Downlink Command: 0xA3**
875 875  
876 876  * Example: 0xA301 ~/~/Same as AT+CLRDTA
877 877  
862 += 5. Battery & How to replace =
878 878  
864 +== 5.1 Battery Type ==
879 879  
880 -
881 -= Battery & How to replace =
882 -
883 -== Battery Type ==
884 -
885 885  LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
886 886  
887 887  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
888 888  [[image:image-20220515075034-1.png||height="208" width="644"]]
889 889  
890 -
891 891  The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
892 892  
893 893  
894 -== Replace Battery ==
874 +== 5.2 Replace Battery ==
895 895  
896 896  LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
897 897  
898 898  [[image:image-20220515075440-2.png||height="338" width="272"]][[image:image-20220515075625-3.png||height="193" width="257"]]
899 899  
880 +== 5.3 Battery Life Analyze ==
900 900  
901 -== Battery Life Analyze ==
902 -
903 903  Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
904 904  https:~/~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf
905 905  
885 += 6. Order Info =
906 906  
907 -= Order Info =
908 -
909 909  Part Number: (% class="mark" %)**LHT65N-XX**
910 910  
911 911  **XX**: The default frequency band
... ... @@ -923,7 +923,7 @@
923 923  
924 924  * **E3**: External Temperature Probe
925 925  
926 -= Packing Info =
904 += 7. Packing Info =
927 927  
928 928  **Package Includes**:
929 929  
... ... @@ -938,10 +938,10 @@
938 938  * Package Size / pcs : 14.5 x 8 x 5 cm
939 939  * Weight / pcs : 170g
940 940  
941 -= FCC Warning =
919 += 8. FCC Warning =
942 942  
943 943  This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
944 944  
945 -(1) This device may not cause harmful interference, and
923 +(1) This device may not cause harmful interference
946 946  
947 -(2) this device must accept any interference received, including interference that may cause undesired operation
925 +(2) this device must accept any interference received, including interference that may cause undesired operation.
image-20220523111447-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +910.1 KB
Content
image-20220523112300-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.5 KB
Content
image-20220523115324-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +910.1 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0