Version 52.1 by Edwin Chen on 2022/05/23 00:35

Show last authors
1 {{box cssClass="floatinginfobox" title="**Contents**"}}
2 {{toc/}}
3 {{/box}}
4
5 = Overview =
6
7 [[image:LHT65N_10.png||alt="LHT65_Image" height="265" width="265"]]
8
9
10 The Dragino LHT65N Temperature & Humidity sensor is a Long Range LoRaWAN Sensor. It includes a(% class="mark" %) **built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% class="mark" %)**Temperature Sensor**(%%)**.**
11
12 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
13
14 LHT65N has a built-in 2400mAh non-chargeable battery which can be used for up to 10 years*.
15
16 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
17
18 LHT65N supports (% class="mark" %)Datalog Feature(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
19
20 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
21
22
23 == Features: ==
24
25 * Wall mountable
26 * LoRaWAN v1.0.3 Class A protocol
27 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
28 * AT Commands to change parameters
29 * Remote configure parameters via LoRaWAN Downlink
30 * Firmware upgradeable via program port
31 * Built-in 2400mAh battery for up to 10 years of use.
32 * Built-in Temperature & Humidity sensor
33 * Optional External Sensors
34 * Tri-color LED to indicate working status
35 * Datalog feature
36
37 == Specification: ==
38
39 **Built-in Temperature Sensor:**
40
41 * Resolution: 0.01 °C
42 * Accuracy Tolerance : Typ ±0.3 °C
43 * Long Term Drift: < 0.02 °C/yr
44 * Operating Range: -40 ~~ 85 °C
45
46 **Built-in Humidity Sensor:**
47
48 * Resolution: 0.04 %RH
49 * Accuracy Tolerance : Typ ±3 %RH
50 * Long Term Drift: < 0.02 °C/yr
51 * Operating Range: 0 ~~ 96 %RH
52
53 **External Temperature Sensor:**
54
55 * Resolution: 0.0625 °C
56 * ±0.5°C accuracy from -10°C to +85°C
57 * ±2°C accuracy from -55°C to +125°C
58 * Operating Range: -55 °C ~~ 125 °C
59
60 = Connect LHT65N to IoT Server =
61
62 == How does LHT65N work? ==
63
64 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
65
66 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
67
68
69 == How to Activate LHT65N? ==
70
71 The LHT65N has two working modes:
72
73 * **Deep Sleep Mode**: LHT65N doesn’t have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
74 * **Working Mode**: In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65 will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
75
76 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
77
78 [[image:image-20220515123819-1.png||height="379" width="317"]]
79
80 |**Behavior on ACT**|**Function**|**Action**
81 |**Pressing ACT between 1s < time < 3s**|Test uplink status|If LHT65N is already Joined to the LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has an external sensor connected, blue led will blink once. If LHT65N has no external sensor, red led will blink once.
82 |**Pressing ACT for more than 3s**|Active Device|green led will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network. green led will solid turn on for 5 seconds after join in network.
83 |**Fast press ACT 5 times**|Deactivate Device|red led will solid on for 5 seconds. This means LHT65N is in Deep Sleep Mode.
84
85 == Example to join LoRaWAN network ==
86
87 (% class="wikigeneratedid" %)
88 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
89
90 (% class="wikigeneratedid" %)
91 [[image:image-20220522232442-1.png||height="387" width="648"]]
92
93 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
94
95
96 === **Step 1**: Create Device n TTN ===
97
98 Create a device in TTN V3 with the OTAA keys from LHT65N.
99
100 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
101
102 [[image:image-20220522232812-2.png||height="219" width="279"]]
103
104 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
105
106 Add APP EUI in the application.
107
108 [[image:image-20220522232916-3.png]]
109
110
111 [[image:image-20220522232932-4.png]]
112
113
114 [[image:image-20220522232954-5.png]]
115
116 Note: LHT65N use same payload as LHT65.
117
118 [[image:image-20220522233026-6.png]]
119
120
121 Input APP EUI,  APP KEY and DEV EUI:
122
123 [[image:image-20220522233118-7.png]]
124
125
126 === Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
127
128 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
129
130 [[image:image-20220522233300-8.png]]
131
132
133 == Uplink Payload: ==
134
135 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and(% class="mark" %) every 20 minutes(%%) send one uplink by default.
136
137 After each uplink, the (% class="mark" %)BLUE LED(%%) will blink once.
138
139
140 (% style="width:572px" %)
141 |(% style="width:106px" %)**Size(bytes)**|(% style="width:71px" %)**2**|(% style="width:128px" %)**2**|(% style="width:103px" %)**2**|(% style="width:72px" %)**1**|(% style="width:89px" %)**4**
142 |(% style="width:106px" %)**Value**|(% style="width:71px" %)[[BAT>>path:#Battery]]|(% style="width:128px" %)(((
143 [[Built-In>>path:#SHT20_Temperature]]
144
145 [[Temperature>>path:#SHT20_Temperature]]
146 )))|(% style="width:103px" %)(((
147 [[Built-in>>path:#SHT20_Humidity]]
148
149 [[Humidity>>path:#SHT20_Humidity]]
150 )))|(% style="width:72px" %)[[Ext>>path:#Extension_Sensor]] #|(% style="width:89px" %)[[Ext value>>path:#Extension_sensor_value]]
151
152 * The First 6 bytes: has fix meanings for every LHT65N.
153 * The 7th byte (EXT #): defines the external sensor model.
154 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won’t be these four bytes.)
155
156 === Decoder in TTN V3 ===
157
158 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
159
160 Below is the position to put the decoder and LHT65N decoder can be download from here:
161
162 [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0 >>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
163
164 [[image:image-20220522234118-10.png]]
165
166
167 === BAT-Battery Info ===
168
169 These two bytes of BAT include the battery state and the actually voltage
170
171 (% style="width:646px" %)
172 |Bit(bit)|(% style="width:272px" %)[15:14]|(% style="width:214px" %)[13:0]
173 |Value|(% style="width:272px" %)(((
174 BAT Status
175
176 00(b): Ultra Low ( BAT <= 2.50v)
177
178 01(b): Low  (2.50v <=BAT <= 2.55v)
179
180 10(b): OK   (2.55v <= BAT <=2.65v)
181
182 11(b): Good   (BAT >= 2.65v)
183 )))|(% style="width:214px" %)Actually BAT voltage
184
185 [[image:image-20220522235639-1.png]]
186
187 Check the battery voltage for LHT65N.
188
189 * BAT status=(0Xcba4>>14)&0xFF=11(B),very good
190 * Battery Voltage =0xCBF6&0x3FFF=0x0BA4=2980mV
191
192 === Built-in Temperature ===
193
194 [[image:image-20220522235639-2.png]]
195
196 * Temperature:  0x0ABB/100=27.47℃
197
198 [[image:image-20220522235639-3.png]]
199
200 * Temperature:  (0xF5C6-65536)/100=-26.18℃
201
202 === Built-in Humidity ===
203
204 [[image:image-20220522235639-4.png]]
205
206 * Humidity:    0x025C/10=60.4%
207
208 === Ext # ===
209
210 Bytes for External Sensor:
211
212 (% style="width:624px" %)
213 |(% style="width:139px" %)**EXT # Value**|(% style="width:484px" %)**External Sensor Type**
214 |(% style="width:139px" %)0x01|(% style="width:484px" %)Sensor E3, Temperature Sensor
215 |(% style="width:139px" %)0x09|(% style="width:484px" %)Sensor E3, Temperature Sensor, Datalog Mod
216
217 === Ext value ===
218
219 ==== Ext~=1, E3 Temperature Sensor ====
220
221 [[image:image-20220522235639-5.png]]
222
223
224 * DS18B20 temp=0x0ADD/100=27.81℃
225
226 The last 2 bytes of data are meaningless
227
228
229
230 [[image:image-20220522235639-6.png]]
231
232 * External temperature= (0xF54F-65536)/100=-27.37℃
233
234 The last 2 bytes of data are meaningless
235
236
237 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
238
239
240 ==== Ext~=9, E3 sensor with Unix Timestamp ====
241
242 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
243
244
245 (% style="width:697px" %)
246 |(% style="width:96px" %)**Size(bytes)**|(% style="width:164px" %)**2**|(% style="width:104px" %)**2**|(% style="width:106px" %)**2**|(% style="width:108px" %)**1**|(% style="width:116px" %)**4**
247 |(% style="width:96px" %)**Value**|(% style="width:164px" %)[[External temperature>>path:#DS18b20_value]]|(% style="width:104px" %)(((
248 [[Built-In>>path:#SHT20_Temperature]]
249
250 [[Temperature>>path:#SHT20_Temperature]]
251 )))|(% style="width:106px" %)(((
252 [[BAT Status &>>path:#BAT_Humidity]]
253
254 [[Built-in>>path:#BAT_Humidity]]
255
256 [[Humidity>>path:#BAT_Humidity]]
257 )))|(% style="width:108px" %)[[Status & Ext>>path:#Status_EXT]]|(% style="width:116px" %)(((
258 [[Unix>>path:#Unix_Time_Stamp]]
259
260 [[Time Stamp>>path:#Unix_Time_Stamp]]
261 )))
262
263 * **Battery status & **[[(% class="wikiinternallink wikiinternallink wikiinternallink" %)**Built-in Humidity**>>path:#SHT20_Humidity]]
264
265 (% style="width:587px" %)
266 |Bit(bit)|(% style="width:280px" %)[15:14]|(% style="width:136px" %)[11:0]
267 |Value|(% style="width:280px" %)(((
268 BAT Status
269
270 00(b): Ultra Low ( BAT <= 2.50v)
271
272 01(b): Low  (2.50v <=BAT <= 2.55v)
273
274 10(b): OK   (2.55v <= BAT <=2.65v)
275
276 11(b): Good   (BAT >= 2.65v)
277 )))|(% style="width:136px" %)(((
278 [[Built-in Humidity>>path:#SHT20_Humidity]]
279
280
281 )))
282
283 * **Status & Ext Byte**
284
285 (% style="width:732px" %)
286 |(% style="width:128px" %)**Bits**|(% style="width:102px" %)**7**|(% style="width:145px" %)**6**|(% style="width:117px" %)**5**|(% style="width:147px" %)**4**|(% style="width:90px" %)**[3:0]**
287 |(% style="width:128px" %)**Status & Ext**|(% style="width:102px" %)Not Defined|(% style="width:145px" %)Poll Message Flag|(% style="width:117px" %)Sync time OK|(% style="width:147px" %)Unix Time Request|(% style="width:90px" %)(((
288 Ext:
289
290 0b(1001)
291 )))
292
293 * Poll Message Flag: 1: This message is a poll message reply, 0: means this is a normal uplink.
294 * Sync time OK: 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
295 * Unix Time Request:1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
296
297 == Show data on Datacake ==
298
299 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
300
301
302 **Step 1**: Be sure that your device is programmed and properly connected to the LoRaWAN network.
303
304 **Step 2**: Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
305
306
307 Add Datacake:
308
309 [[image:image-20220523000825-7.png||height="262" width="583"]]
310
311
312 Select default key as Access Key:
313
314 [[image:image-20220523000825-8.png||height="453" width="406"]]
315
316
317 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
318
319 [[image:image-20220523000825-9.png||height="366" width="392"]]
320
321
322
323 [[image:image-20220523000825-10.png||height="432" width="762"]]
324
325
326 == Datalog Feature ==
327
328 This feature is always enabled. When user wants to retrieve the sensor value, he can send a poll command from the IoT platform to ask LHT65N to send the value in the required time slot.
329
330 === Unix TimeStamp ===
331
332 LHT65N uses Unix TimeStamp format based on
333
334 [[image:image-20220523001219-11.png||height="97" width="627"]]
335
336
337 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
338
339 Below is the converter example
340
341 [[image:image-20220523001219-12.png||height="353" width="853"]]
342
343 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
344
345
346 === Set Device Time ===
347
348 There are two ways to set device’s time:
349
350 **~1. Through LoRaWAN MAC Command (Default settings)**
351
352 User need to set SYNCMOD=1 to enable sync time via MAC command.
353
354 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
355
356 Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn’t support. If server doesn’t support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.
357
358
359 **2. Manually Set Time**
360
361 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
362
363
364 === Poll sensor value ===
365
366 User can poll sensor value based on timestamps from the server. Below is the downlink command.
367
368
369 (% style="width:454px" %)
370 |(% style="width:69px" %)1byte|(% style="width:129px" %)4bytes|(% style="width:134px" %)4bytes|(% style="width:119px" %)1byte
371 |(% style="width:69px" %)31|(% style="width:129px" %)Timestamp start|(% style="width:134px" %)Timestamp end|(% style="width:119px" %)Uplink Interval
372
373 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
374
375
376 For example, downlink command 31 5FC5F350 5FC6 0160 05
377
378 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00’s data
379
380 Uplink Internal =5s,means LHT65N will send one packet every 5s. range 5~~255s.
381
382
383 === Datalog Uplink payload ===
384
385 The Datalog poll reply uplink will use below payload format.
386
387
388 Retrieval data payload
389
390 |**Size(bytes)**|**2**|**2**|**2**|**1**|**4**
391 |**Value**|[[External sensor data>>path:#Extension_sensor_value]]|(((
392 [[Built-In>>path:#SHT20_Temperature]]
393
394 [[Temperature>>path:#SHT20_Temperature]]
395 )))|(((
396 [[Built-in>>path:#SHT20_Humidity]]
397
398 [[Humidity>>path:#SHT20_Humidity]]
399 )))|[[Poll message flag & Ext>>path:#Poll_EXT]]|(((
400 [[Unix Time Stamp>>path:#Unix_Time_Stamp]]
401
402
403 )))
404
405 Poll message flag & Ext
406
407
408 |**Bits**|**7**|**6**|**5**|**4**|**[3:0]**
409 |**Status & Ext**|Not Defined|Poll Message Flag|Sync time OK|Unix Time Request|(((
410 Ext:
411
412 0b(1001)
413 )))
414
415 Poll Message Flag: 1: This message is a poll message reply.
416
417 * Poll Message Flag is set to 1.
418 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
419
420 For example, in US915 band, the max payload for different DR is:
421
422 a)      DR0: max is 11 bytes so one entry of data
423
424 b)      DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
425
426 c)      DR2: total payload includes 11 entries of data
427
428 d)      DR3: total payload includes 22 entries of data.
429
430 If devise doesn’t have any data in the polling time. Device will uplink 11 bytes of 0   
431
432
433 **Example:**
434
435 If LHT65N has below data inside Flash:
436
437 Flash Addr   |Unix Time | Ext | BAT voltage|  Value                  
438
439 80196E0 21/1/19 04:27:03 1 3145 sht_temp=22.00 sht_hum=32.6 ds_temp=327.67
440
441 80196F0 21/1/19 04:28:57 1 3145 sht_temp=21.90 sht_hum=33.1 ds_temp=327.67
442
443 8019700 21/1/19 04:30:30 1 3145 sht_temp=21.81 sht_hum=33.4 ds_temp=327.67
444
445 8019710 21/1/19 04:40:30 1 3145 sht_temp=21.65 sht_hum=33.7 ds_temp=327.67
446
447 8019720 21/1/19 04:50:30 1 3147 sht_temp=21.55 sht_hum=34.1 ds_temp=327.67
448
449 8019730 21/1/19 05:00:30 1 3149 sht_temp=21.50 sht_hum=34.1 ds_temp=327.67
450
451 8019740 21/1/19 05:10:30 1 3149 sht_temp=21.43 sht_hum=34.6 ds_temp=327.67
452
453 8019750 21/1/19 05:20:30 1 3151 sht_temp=21.35 sht_hum=34.9 ds_temp=327.67
454
455
456 If user sends below downlink command:
457
458 3160065F9760066DA705
459
460 Where : Start time: 60065F97 = time 21/1/19 04:27:03
461
462 Stop time 60066DA7= time 21/1/19 05:27:03
463
464
465 LHT65N will uplink this payload.
466
467 [[image:image-20220523001219-13.png]]
468
469 7FFF089801464160065F977FFF088E014B41600660097FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
470
471 Where the first 11 bytes is for the first entry:
472
473 7FFF089801464160065F97
474
475 Ext sensor data=0x7FFF/100=327.67
476
477 Temp=0x0898/100=22.00
478
479 Hum=0x0146/10=32.6
480
481 poll message flag & Ext=0x41,means reply data,Ext=1
482
483 Unix time is 0x60065F97=1611030423s=21/1/19 04:27:03
484
485
486 == Alarm Mode ==
487
488 Alarm mode feature is added since firmware v1.5. When device is in Alarm mode, it will check the built-in sensor temperature in a short interval. If the temperature exceeds the pre-configure range, it will send an uplink immediately.
489
490
491 Note: Alarm mode will increase a little big the power consumption, we recommend extending the normal reading time when enabling this feature.
492
493
494 AT Commands for Alarm mode:
495
496 **AT+WMOD=1**: Enable/Disable Alarm Mode. (0:Disable, 1: Enable)
497
498 **AT+CITEMP=1**: The interval to check the temperature for Alarm. (Unit: minute)
499
500
501
502 == LED Indicator ==
503
504 The LHT65N has a triple color LED which for easy shows different stage.
505
506 While pressing ACT button, the LED will work as per LED status with ACT button.
507
508 In a normal working state:
509
510 * For each uplink, the BLUE LED or RED LED will blink once.
511 * BLUE LED when an external sensor is connected
512 * RED LED when an external sensor is not connected
513 * For each success downlink, the PURPLE LED will blink once
514
515 ----
516
517 == Installation ==
518
519 [[image:image-20220516231650-1.png||height="436" width="428"]]
520
521
522
523
524 = Sensors & Accessories =
525
526 == E3 Temperature Probe ==
527
528 [[image:image-20220515080154-4.png||height="182" width="161"]] [[image:image-20220515080330-5.png||height="201" width="195"]]
529
530
531 With Temperature sensor with 2 meters cable long
532
533 * Resolution: 0.0625 °C
534 * ±0.5°C accuracy from -10°C to +85°C
535 * ±2°C accuracy from -55°C to +125°C
536 * Operating Range: -40 ~~ 125 °C
537 * -55°C to 125°C
538 * Working voltage 2.35v ~~ 5v
539
540 = Configure LHT65N via AT Command or LoRaWAN Downlink =
541
542 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
543
544 * AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
545 * LoRaWAN Downlink instruction for different platforms:
546
547 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
548
549
550 There are two kinds of commands to configure LHT65N, they are:
551
552 * **General Commands**.
553
554 These commands are to configure:
555
556 * General system settings like: uplink interval.
557 * LoRaWAN protocol & radio-related commands.
558
559 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki:
560
561 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
562
563
564
565 * **Commands special design for LHT65N**
566
567 These commands are only valid for LHT65N, as below:
568
569
570 == Set Transmit Interval Time ==
571
572 Feature: Change LoRaWAN End Node Transmit Interval.
573
574 **AT Command: AT+TDC**
575
576 |**Command Example**|**Function**|**Response**
577 |AT+TDC?|Show current transmit Interval|(((
578 30000
579
580 OK
581
582 the interval is 30000ms = 30s
583 )))
584 |AT+TDC=60000|Set Transmit Interval|(((
585 OK
586
587 Set transmit interval to 60000ms = 60 seconds
588 )))
589
590
591 **Downlink Command: 0x01**
592
593 Format: Command Code (0x01) followed by 3 bytes time value.
594
595 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
596
597 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
598 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
599
600
601 == Set External Sensor Mode ==
602
603 Feature: Change External Sensor Mode.
604
605 **AT Command: AT+EXT**
606
607 |**Command Example**|**Function**|**Response**
608 |AT+EXT?|Get current external sensor mode|(((
609 1
610
611 OK
612
613 External Sensor mode =1
614 )))
615 |AT+EXT=1|(% colspan="2" %)Set external sensor mode to 1
616 |AT+EXT=9|(% colspan="2" %)Set to external DS18B20 with timestamp
617
618
619 **Downlink Command: 0xA2**
620
621 Total bytes: 2 ~~ 5 bytes
622
623 Example:
624
625 * 0xA201: Set external sensor type to E1
626 * 0xA209: Same as AT+EXT=9
627 * 0xA20702003c,Same as AT+SETCNT=60
628
629
630 == Enable/Disable uplink Temperature probe ID ==
631
632 Feature: If PID is enabled, device will send the temperature probe ID on:
633
634 * First Packet after OTAA Join
635 * Every 24 hours since the first packet.
636
637 PID is default set to disable (0)
638
639
640 **AT Command:**
641
642 |**Command Example**|**Function**|**Response**
643 |AT+PID=1|Enable PID uplink|OK
644
645
646 **Downlink Command:**
647
648 * 0xA800     à AT+PID=0
649 * 0xA801     à AT+PID=1
650
651
652
653 == Set Password ==
654
655 Feature: Set device password, max 9 digits
656
657 **AT Command: AT+PWORD**
658
659 |**Command Example**|**Function**|**Response**
660 |AT+PWORD=?|Show password|(((
661 123456
662
663
664 OK
665 )))
666 |AT+PWORD=999999|Set password|OK
667
668
669 **Downlink Command:**
670
671 No downlink command for this feature.
672
673
674 == Quit AT Command ==
675
676 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
677
678 **AT Command: AT+DISAT**
679
680 |**Command Example**|**Function**|**Response**
681 |AT+DISAT|Quit AT Commands mode|OK
682
683
684 **Downlink Command:**
685
686 No downlink command for this feature.
687
688
689 == Set to sleep mode ==
690
691 Feature: Set device to sleep mode
692
693 **AT Command: AT+SLEEP**
694
695 | | |
696 |**Command Example**|**Function**|**Response**
697 |AT+SLEEP|Set to sleep mode|(((
698 Clear all stored sensor data…
699
700 OK
701 )))
702
703
704 **Downlink Command:**
705
706 * There is no downlink command to set to Sleep mode.
707
708
709
710 == Set system time ==
711
712 Feature: Set system time, unix format. [[See here for format detail.>>path:#TimeStamp]]
713
714 **AT Command:**
715
716 |**Command Example**|**Function**
717 |AT+TIMESTAMP=1611104352|(((
718 OK
719
720 Set System time to 2021-01-20 00:59:12
721 )))
722
723
724 **Downlink Command:**
725
726 0x306007806000 ~/~/ Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
727
728
729 == Set Time Sync Mode ==
730
731 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
732
733
734 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
735
736
737 **AT Command:**
738
739 |**Command Example**|**Function**
740 |AT+SYNCMOD=1|Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
741
742
743 **Downlink Command:**
744
745 0x28 01 ~/~/ Same As AT+SYNCMOD=1
746
747 0x28 00 ~/~/ Same As AT+SYNCMOD=0
748
749
750 == Set Time Sync Interval ==
751
752 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
753
754 **AT Command:**
755
756 |**Command Example**|**Function**
757 |AT+SYNCTDC=0x0A|Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
758
759
760 **Downlink Command:**
761
762 0x29 0A ~/~/ Same as AT+SYNCTDC=0x0A
763
764
765 == Print data entries base on page. ==
766
767 Feature: Print the sector data from start page to stop page (max is 416 pages).
768
769 **AT Command: AT+PDTA**
770
771 |**Command Example**|**Response**
772 |(((
773 AT+PDTA=1,3
774
775
776
777 Print page 1 to 3
778 )))|(((
779 8019500 19/6/26 16:48 1 2992 sht_temp=28.21 sht_hum=71.5 ds_temp=27.31
780
781 8019510 19/6/26 16:53 1 2994 sht_temp=27.64 sht_hum=69.3 ds_temp=26.93
782
783 8019520 19/6/26 16:58 1 2996 sht_temp=28.39 sht_hum=72.0 ds_temp=27.06
784
785 8019530 19/6/26 17:03 1 2996 sht_temp=27.97 sht_hum=70.4 ds_temp=27.12
786
787 8019540 19/6/26 17:08 1 2996 sht_temp=27.80 sht_hum=72.9 ds_temp=27.06
788
789 8019550 19/6/26 17:13 1 2998 sht_temp=27.30 sht_hum=72.4 ds_temp=26.68
790
791 8019560 19/6/26 17:22 1 2992 sht_temp=26.27 sht_hum=62.3 ds_temp=26.56
792
793 8019570
794
795 8019580
796
797 8019590
798
799 80195A0
800
801 80195B0
802
803 80195C0
804
805 80195D0
806
807 80195E0
808
809 80195F0
810
811
812 OK
813 )))
814
815
816 **Downlink Command:**
817
818 No downlink commands for feature
819
820
821
822 == Print last few data entries. ==
823
824 Feature: Print the last few data entries
825
826 **AT Command: AT+PLDTA**
827
828 |**Command Example**|**Response**
829 |(((
830 AT+PLDTA=5
831
832
833
834 Print last 5 entries
835 )))|(((
836 Stop Tx and RTP events when read sensor data
837
838 1 19/6/26 13:59 1 3005 sht_temp=27.09 sht_hum=79.5 ds_temp=26.75
839
840 2 19/6/26 14:04 1 3007 sht_temp=26.65 sht_hum=74.8 ds_temp=26.43
841
842 3 19/6/26 14:09 1 3007 sht_temp=26.91 sht_hum=77.9 ds_temp=26.56
843
844 4 19/6/26 14:15 1 3007 sht_temp=26.93 sht_hum=76.7 ds_temp=26.75
845
846 5 19/6/26 14:20 1 3007 sht_temp=26.78 sht_hum=76.6 ds_temp=26.43
847
848 Start Tx and RTP events
849
850 OK
851 )))
852
853
854 **Downlink Command:**
855
856 No downlink commands for feature
857
858
859
860 == Clear Flash Record ==
861
862 Feature: Clear flash storage for data log feature.
863
864 **AT Command: AT+CLRDTA**
865
866 |**Command Example**|**Function**|**Response**
867 |AT+CLRDTA|Clear date record|(((
868 Clear all stored sensor data…
869
870 OK
871 )))
872
873
874 **Downlink Command: 0xA3**
875
876 * Example: 0xA301 ~/~/Same as AT+CLRDTA
877
878
879
880
881 = Battery & How to replace =
882
883 == Battery Type ==
884
885 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
886
887 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
888 [[image:image-20220515075034-1.png||height="208" width="644"]]
889
890
891 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
892
893
894 == Replace Battery ==
895
896 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
897
898 [[image:image-20220515075440-2.png||height="338" width="272"]][[image:image-20220515075625-3.png||height="193" width="257"]]
899
900
901 == Battery Life Analyze ==
902
903 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
904 https:~/~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf
905
906
907 = Order Info =
908
909 Part Number: (% class="mark" %)**LHT65N-XX**
910
911 **XX**: The default frequency band
912
913 * **AS923**: LoRaWAN AS923 band
914 * **AU915**: LoRaWAN AU915 band
915 * **EU433**: LoRaWAN EU433 band
916 * **EU868**: LoRaWAN EU868 band
917 * **KR920**: LoRaWAN KR920 band
918 * **US915**: LoRaWAN US915 band
919 * **IN865**: LoRaWAN IN865 band
920 * **CN470**: LoRaWAN CN470 band
921
922 **YY**: Sensor Accessories
923
924 * **E3**: External Temperature Probe
925
926 = Packing Info =
927
928 **Package Includes**:
929
930 * LHT65N Temperature & Humidity Sensor x 1
931 * Program cable x 1
932 * Optional external sensor
933
934 **Dimension and weight**:
935
936 * Device Size:  13.5 x 7 x 3 cm
937 * Device Weight: 105g
938 * Package Size / pcs : 14.5 x 8 x 5 cm
939 * Weight / pcs : 170g
940
941 = FCC Warning =
942
943 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
944
945 (1) This device may not cause harmful interference, and
946
947 (2) this device must accept any interference received, including interference that may cause undesired operation