Show last authors
1
2
3 **Table of Contents:**
4
5 {{toc/}}
6
7
8
9 = 1.  LA66 LoRaWAN Module =
10
11
12 == 1.1  What is LA66 LoRaWAN Module ==
13
14
15 (((
16 [[image:image-20220715000242-1.png||height="110" width="132"]]
17
18 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
19 )))
20
21 (((
22 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
23 )))
24
25 (((
26 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
27 )))
28
29 (((
30 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
31 )))
32
33 (((
34 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
35 )))
36
37
38 == 1.2  Features ==
39
40 * Support LoRaWAN v1.0.4 protocol
41 * Support peer-to-peer protocol
42 * TCXO crystal to ensure RF performance on low temperature
43 * SMD Antenna pad and i-pex antenna connector
44 * Available in different frequency LoRaWAN frequency bands.
45 * World-wide unique OTAA keys.
46 * AT Command via UART-TTL interface
47 * Firmware upgradable via UART interface
48 * Ultra-long RF range
49
50
51
52 == 1.3  Specification ==
53
54 * CPU: 32-bit 48 MHz
55 * Flash: 256KB
56 * RAM: 64KB
57 * Input Power Range: 1.8v ~~ 3.7v
58 * Power Consumption: < 4uA.
59 * Frequency Range: 150 MHz ~~ 960 MHz
60 * Maximum Power +22 dBm constant RF output
61 * High sensitivity: -148 dBm
62 * Temperature:
63 ** Storage: -55 ~~ +125℃
64 ** Operating: -40 ~~ +85℃
65 * Humidity:
66 ** Storage: 5 ~~ 95% (Non-Condensing)
67 ** Operating: 10 ~~ 95% (Non-Condensing)
68 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
69 * LoRa Rx current: <9 mA
70 * I/O Voltage: 3.3v
71
72
73
74
75 == 1.4  AT Command ==
76
77
78 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
79
80
81
82 == 1.5  Dimension ==
83
84 [[image:image-20220718094750-3.png]]
85
86
87
88
89 == 1.6  Pin Mapping ==
90
91
92 [[image:image-20220523101537-1.png]]
93
94
95
96 == 1.7  Land Pattern ==
97
98 [[image:image-20220517072821-2.png]]
99
100
101
102 = 2.  LA66 LoRaWAN Shield =
103
104
105 == 2.1  Overview ==
106
107
108 [[image:image-20220715000826-2.png||height="386" width="449"]]
109
110
111 LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
112
113 (((
114 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
115 )))
116
117 (((
118 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
119 )))
120
121 (((
122 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
123 )))
124
125 (((
126 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
127 )))
128
129
130 == 2.2  Features ==
131
132 * Arduino Shield base on LA66 LoRaWAN module
133 * Support LoRaWAN v1.0.4 protocol
134 * Support peer-to-peer protocol
135 * TCXO crystal to ensure RF performance on low temperature
136 * SMA connector
137 * Available in different frequency LoRaWAN frequency bands.
138 * World-wide unique OTAA keys.
139 * AT Command via UART-TTL interface
140 * Firmware upgradable via UART interface
141 * Ultra-long RF range
142
143 == 2.3  Specification ==
144
145 * CPU: 32-bit 48 MHz
146 * Flash: 256KB
147 * RAM: 64KB
148 * Input Power Range: 1.8v ~~ 3.7v
149 * Power Consumption: < 4uA.
150 * Frequency Range: 150 MHz ~~ 960 MHz
151 * Maximum Power +22 dBm constant RF output
152 * High sensitivity: -148 dBm
153 * Temperature:
154 ** Storage: -55 ~~ +125℃
155 ** Operating: -40 ~~ +85℃
156 * Humidity:
157 ** Storage: 5 ~~ 95% (Non-Condensing)
158 ** Operating: 10 ~~ 95% (Non-Condensing)
159 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
160 * LoRa Rx current: <9 mA
161 * I/O Voltage: 3.3v
162
163 == 2.4  Pin Mapping & LED ==
164
165
166
167 == 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
168
169
170
171 == 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
172
173
174
175 == 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
176
177
178
179 == 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
180
181
182 === 2.8.1  Items needed for update ===
183
184 1. LA66 LoRaWAN Shield
185 1. Arduino
186 1. USB TO TTL Adapter
187
188 [[image:image-20220602100052-2.png||height="385" width="600"]]
189
190
191 === 2.8.2  Connection ===
192
193
194 [[image:image-20220602101311-3.png||height="276" width="600"]]
195
196
197 (((
198 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
199 )))
200
201 (((
202 (% style="background-color:yellow" %)**GND  <-> GND
203 TXD  <->  TXD
204 RXD  <->  RXD**
205 )))
206
207
208 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
209
210 Connect USB TTL Adapter to PC after connecting the wires
211
212
213 [[image:image-20220602102240-4.png||height="304" width="600"]]
214
215
216 === 2.8.3  Upgrade steps ===
217
218
219 ==== 1.  Switch SW1 to put in ISP position ====
220
221
222 [[image:image-20220602102824-5.png||height="306" width="600"]]
223
224
225
226 ==== 2.  Press the RST switch once ====
227
228
229 [[image:image-20220602104701-12.png||height="285" width="600"]]
230
231
232
233 ==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
234
235
236 (((
237 (% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
238 )))
239
240
241 [[image:image-20220602103227-6.png]]
242
243
244 [[image:image-20220602103357-7.png]]
245
246
247
248 (% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
249 (% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
250
251
252 [[image:image-20220602103844-8.png]]
253
254
255
256 (% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
257 (% style="color:blue" %)**3. Select the bin file to burn**
258
259
260 [[image:image-20220602104144-9.png]]
261
262
263 [[image:image-20220602104251-10.png]]
264
265
266 [[image:image-20220602104402-11.png]]
267
268
269
270 (% class="wikigeneratedid" id="HClicktostartthedownload" %)
271 (% style="color:blue" %)**4. Click to start the download**
272
273 [[image:image-20220602104923-13.png]]
274
275
276
277 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
278 (% style="color:blue" %)**5. Check update process**
279
280
281 [[image:image-20220602104948-14.png]]
282
283
284
285 (% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
286 (% style="color:blue" %)**The following picture shows that the burning is successful**
287
288 [[image:image-20220602105251-15.png]]
289
290
291
292 = 3.  LA66 USB LoRaWAN Adapter =
293
294
295 == 3.1  Overview ==
296
297 [[image:image-20220715001142-3.png||height="145" width="220"]]
298
299 (% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
300
301 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
302
303 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
304
305 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
306
307 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
308
309
310 == 3.2  Features ==
311
312 * LoRaWAN USB adapter base on LA66 LoRaWAN module
313 * Ultra-long RF range
314 * Support LoRaWAN v1.0.4 protocol
315 * Support peer-to-peer protocol
316 * TCXO crystal to ensure RF performance on low temperature
317 * Spring RF antenna
318 * Available in different frequency LoRaWAN frequency bands.
319 * World-wide unique OTAA keys.
320 * AT Command via UART-TTL interface
321 * Firmware upgradable via UART interface
322 * Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
323
324 == 3.3  Specification ==
325
326 * CPU: 32-bit 48 MHz
327 * Flash: 256KB
328 * RAM: 64KB
329 * Input Power Range: 5v
330 * Frequency Range: 150 MHz ~~ 960 MHz
331 * Maximum Power +22 dBm constant RF output
332 * High sensitivity: -148 dBm
333 * Temperature:
334 ** Storage: -55 ~~ +125℃
335 ** Operating: -40 ~~ +85℃
336 * Humidity:
337 ** Storage: 5 ~~ 95% (Non-Condensing)
338 ** Operating: 10 ~~ 95% (Non-Condensing)
339 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
340 * LoRa Rx current: <9 mA
341
342 == 3.4  Pin Mapping & LED ==
343
344
345
346 == 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
347
348
349 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
350
351
352 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
353
354
355 [[image:image-20220602171217-1.png||height="538" width="800"]]
356
357
358 Open the serial port tool
359
360 [[image:image-20220602161617-8.png]]
361
362 [[image:image-20220602161718-9.png||height="457" width="800"]]
363
364
365
366 (% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
367
368 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
369
370
371 [[image:image-20220602161935-10.png||height="498" width="800"]]
372
373
374
375 (% style="color:blue" %)**3. See Uplink Command**
376
377 Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
378
379 example: AT+SENDB=01,02,8,05820802581ea0a5
380
381 [[image:image-20220602162157-11.png||height="497" width="800"]]
382
383
384
385 (% style="color:blue" %)**4. Check to see if TTN received the message**
386
387 [[image:image-20220602162331-12.png||height="420" width="800"]]
388
389
390
391 == 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
392
393
394 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
395
396
397 (% style="color:red" %)**Preconditions:**
398
399 (% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
400
401 (% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
402
403
404
405 (% style="color:blue" %)**Steps for usage:**
406
407 (% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
408
409 (% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
410
411 [[image:image-20220602115852-3.png||height="450" width="1187"]]
412
413
414
415 == 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
416
417
418 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
419
420
421 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
422
423 [[image:image-20220602171233-2.png||height="538" width="800"]]
424
425
426
427 (% style="color:blue" %)**2. Install Minicom in RPi.**
428
429 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
430
431 (% style="background-color:yellow" %)**apt update**
432
433 (% style="background-color:yellow" %)**apt install minicom**
434
435
436 Use minicom to connect to the RPI's terminal
437
438 [[image:image-20220602153146-3.png||height="439" width="500"]]
439
440
441
442 (% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
443
444 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
445
446
447 [[image:image-20220602154928-5.png||height="436" width="500"]]
448
449
450
451 (% style="color:blue" %)**4. Send Uplink message**
452
453 Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
454
455 example: AT+SENDB=01,02,8,05820802581ea0a5
456
457
458 [[image:image-20220602160339-6.png||height="517" width="600"]]
459
460
461
462 Check to see if TTN received the message
463
464 [[image:image-20220602160627-7.png||height="369" width="800"]]
465
466
467
468 == 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
469
470
471
472 == 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
473
474
475
476
477 = 4.  Order Info =
478
479
480 **Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
481
482
483 (% style="color:blue" %)**XXX**(%%): The default frequency band
484
485 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
486 * (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
487 * (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
488 * (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
489 * (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
490 * (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
491 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
492 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
493 * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
494
495 = 5.  Reference =
496
497 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0