Show last authors
1
2
3 **Table of Contents:**
4
5 {{toc/}}
6
7
8
9 = 1.  LA66 LoRaWAN Module =
10
11
12 == 1.1  What is LA66 LoRaWAN Module ==
13
14
15 (((
16 [[image:image-20220715000242-1.png||height="110" width="132"]]
17
18 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
19 )))
20
21 (((
22 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
23 )))
24
25 (((
26 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
27 )))
28
29 (((
30 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
31 )))
32
33 (((
34 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
35 )))
36
37
38 == 1.2  Features ==
39
40 * Support LoRaWAN v1.0.4 protocol
41 * Support peer-to-peer protocol
42 * TCXO crystal to ensure RF performance on low temperature
43 * SMD Antenna pad and i-pex antenna connector
44 * Available in different frequency LoRaWAN frequency bands.
45 * World-wide unique OTAA keys.
46 * AT Command via UART-TTL interface
47 * Firmware upgradable via UART interface
48 * Ultra-long RF range
49
50 == 1.3  Specification ==
51
52 * CPU: 32-bit 48 MHz
53 * Flash: 256KB
54 * RAM: 64KB
55 * Input Power Range: 1.8v ~~ 3.7v
56 * Power Consumption: < 4uA.
57 * Frequency Range: 150 MHz ~~ 960 MHz
58 * Maximum Power +22 dBm constant RF output
59 * High sensitivity: -148 dBm
60 * Temperature:
61 ** Storage: -55 ~~ +125℃
62 ** Operating: -40 ~~ +85℃
63 * Humidity:
64 ** Storage: 5 ~~ 95% (Non-Condensing)
65 ** Operating: 10 ~~ 95% (Non-Condensing)
66 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
67 * LoRa Rx current: <9 mA
68 * I/O Voltage: 3.3v
69
70
71
72
73 == 1.4  AT Command ==
74
75
76 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
77
78
79 == 1.5  Dimension ==
80
81 [[image:image-20220718094750-3.png]]
82
83
84
85
86 == 1.6  Pin Mapping ==
87
88
89 [[image:image-20220523101537-1.png]]
90
91
92
93 == 1.7  Land Pattern ==
94
95 [[image:image-20220517072821-2.png]]
96
97
98
99 = 2.  LA66 LoRaWAN Shield =
100
101
102 == 2.1  Overview ==
103
104
105 [[image:image-20220715000826-2.png||height="386" width="449"]]
106
107
108 LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
109
110 (((
111 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
112 )))
113
114 (((
115 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
116 )))
117
118 (((
119 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
120 )))
121
122 (((
123 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
124 )))
125
126
127 == 2.2  Features ==
128
129 * Arduino Shield base on LA66 LoRaWAN module
130 * Support LoRaWAN v1.0.4 protocol
131 * Support peer-to-peer protocol
132 * TCXO crystal to ensure RF performance on low temperature
133 * SMA connector
134 * Available in different frequency LoRaWAN frequency bands.
135 * World-wide unique OTAA keys.
136 * AT Command via UART-TTL interface
137 * Firmware upgradable via UART interface
138 * Ultra-long RF range
139
140 == 2.3  Specification ==
141
142 * CPU: 32-bit 48 MHz
143 * Flash: 256KB
144 * RAM: 64KB
145 * Input Power Range: 1.8v ~~ 3.7v
146 * Power Consumption: < 4uA.
147 * Frequency Range: 150 MHz ~~ 960 MHz
148 * Maximum Power +22 dBm constant RF output
149 * High sensitivity: -148 dBm
150 * Temperature:
151 ** Storage: -55 ~~ +125℃
152 ** Operating: -40 ~~ +85℃
153 * Humidity:
154 ** Storage: 5 ~~ 95% (Non-Condensing)
155 ** Operating: 10 ~~ 95% (Non-Condensing)
156 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
157 * LoRa Rx current: <9 mA
158 * I/O Voltage: 3.3v
159
160 == 2.4  Pin Mapping & LED ==
161
162
163
164 == 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
165
166
167
168 == 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
169
170
171
172 == 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
173
174
175
176 == 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
177
178
179 === 2.8.1  Items needed for update ===
180
181 1. LA66 LoRaWAN Shield
182 1. Arduino
183 1. USB TO TTL Adapter
184
185 [[image:image-20220602100052-2.png||height="385" width="600"]]
186
187
188 === 2.8.2  Connection ===
189
190
191 [[image:image-20220602101311-3.png||height="276" width="600"]]
192
193
194 (((
195 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
196 )))
197
198 (((
199 (% style="background-color:yellow" %)**GND  <-> GND
200 TXD  <->  TXD
201 RXD  <->  RXD**
202 )))
203
204
205 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
206
207 Connect USB TTL Adapter to PC after connecting the wires
208
209
210 [[image:image-20220602102240-4.png||height="304" width="600"]]
211
212
213 === 2.8.3  Upgrade steps ===
214
215
216 ==== 1.  Switch SW1 to put in ISP position ====
217
218
219 [[image:image-20220602102824-5.png||height="306" width="600"]]
220
221
222
223 ==== 2.  Press the RST switch once ====
224
225
226 [[image:image-20220602104701-12.png||height="285" width="600"]]
227
228
229
230 ==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
231
232
233 (((
234 (% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
235 )))
236
237
238 [[image:image-20220602103227-6.png]]
239
240
241 [[image:image-20220602103357-7.png]]
242
243
244
245 (% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
246 (% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
247
248
249 [[image:image-20220602103844-8.png]]
250
251
252
253 (% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
254 (% style="color:blue" %)**3. Select the bin file to burn**
255
256
257 [[image:image-20220602104144-9.png]]
258
259
260 [[image:image-20220602104251-10.png]]
261
262
263 [[image:image-20220602104402-11.png]]
264
265
266
267 (% class="wikigeneratedid" id="HClicktostartthedownload" %)
268 (% style="color:blue" %)**4. Click to start the download**
269
270 [[image:image-20220602104923-13.png]]
271
272
273
274 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
275 (% style="color:blue" %)**5. Check update process**
276
277
278 [[image:image-20220602104948-14.png]]
279
280
281
282 (% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
283 (% style="color:blue" %)**The following picture shows that the burning is successful**
284
285 [[image:image-20220602105251-15.png]]
286
287
288
289 = 3.  LA66 USB LoRaWAN Adapter =
290
291
292 == 3.1  Overview ==
293
294 [[image:image-20220715001142-3.png||height="145" width="220"]]
295
296 (% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
297
298 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
299
300 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
301
302 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
303
304 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
305
306
307 == 3.2  Features ==
308
309 * LoRaWAN USB adapter base on LA66 LoRaWAN module
310 * Ultra-long RF range
311 * Support LoRaWAN v1.0.4 protocol
312 * Support peer-to-peer protocol
313 * TCXO crystal to ensure RF performance on low temperature
314 * Spring RF antenna
315 * Available in different frequency LoRaWAN frequency bands.
316 * World-wide unique OTAA keys.
317 * AT Command via UART-TTL interface
318 * Firmware upgradable via UART interface
319 * Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
320
321 == 3.3  Specification ==
322
323 * CPU: 32-bit 48 MHz
324 * Flash: 256KB
325 * RAM: 64KB
326 * Input Power Range: 5v
327 * Frequency Range: 150 MHz ~~ 960 MHz
328 * Maximum Power +22 dBm constant RF output
329 * High sensitivity: -148 dBm
330 * Temperature:
331 ** Storage: -55 ~~ +125℃
332 ** Operating: -40 ~~ +85℃
333 * Humidity:
334 ** Storage: 5 ~~ 95% (Non-Condensing)
335 ** Operating: 10 ~~ 95% (Non-Condensing)
336 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
337 * LoRa Rx current: <9 mA
338
339 == 3.4  Pin Mapping & LED ==
340
341
342
343 == 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
344
345
346 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
347
348
349 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
350
351
352 [[image:image-20220602171217-1.png||height="538" width="800"]]
353
354
355 Open the serial port tool
356
357 [[image:image-20220602161617-8.png]]
358
359 [[image:image-20220602161718-9.png||height="457" width="800"]]
360
361
362
363 (% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
364
365 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
366
367
368 [[image:image-20220602161935-10.png||height="498" width="800"]]
369
370
371
372 (% style="color:blue" %)**3. See Uplink Command**
373
374 Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
375
376 example: AT+SENDB=01,02,8,05820802581ea0a5
377
378 [[image:image-20220602162157-11.png||height="497" width="800"]]
379
380
381
382 (% style="color:blue" %)**4. Check to see if TTN received the message**
383
384 [[image:image-20220602162331-12.png||height="420" width="800"]]
385
386
387
388 == 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
389
390
391 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
392
393
394 (% style="color:red" %)**Preconditions:**
395
396 (% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
397
398 (% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
399
400
401
402 (% style="color:blue" %)**Steps for usage:**
403
404 (% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
405
406 (% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
407
408 [[image:image-20220602115852-3.png||height="450" width="1187"]]
409
410
411
412 == 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
413
414
415 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
416
417
418 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
419
420 [[image:image-20220602171233-2.png||height="538" width="800"]]
421
422
423
424 (% style="color:blue" %)**2. Install Minicom in RPi.**
425
426 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
427
428 (% style="background-color:yellow" %)**apt update**
429
430 (% style="background-color:yellow" %)**apt install minicom**
431
432
433 Use minicom to connect to the RPI's terminal
434
435 [[image:image-20220602153146-3.png||height="439" width="500"]]
436
437
438
439 (% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
440
441 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
442
443
444 [[image:image-20220602154928-5.png||height="436" width="500"]]
445
446
447
448 (% style="color:blue" %)**4. Send Uplink message**
449
450 Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
451
452 example: AT+SENDB=01,02,8,05820802581ea0a5
453
454
455 [[image:image-20220602160339-6.png||height="517" width="600"]]
456
457
458
459 Check to see if TTN received the message
460
461 [[image:image-20220602160627-7.png||height="369" width="800"]]
462
463
464
465 == 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
466
467
468
469 == 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
470
471
472
473
474 = 4.  Order Info =
475
476
477 **Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
478
479
480 (% style="color:blue" %)**XXX**(%%): The default frequency band
481
482 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
483 * (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
484 * (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
485 * (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
486 * (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
487 * (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
488 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
489 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
490 * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
491
492 = 5.  Reference =
493
494 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
495
496
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0