Show last authors
1
2
3 **Table of Contents:**
4
5 {{toc/}}
6
7
8
9 = 1.  LA66 LoRaWAN Module =
10
11
12 == 1.1  What is LA66 LoRaWAN Module ==
13
14
15 (((
16 [[image:image-20220715000242-1.png||height="110" width="132"]]
17
18 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
19 )))
20
21 (((
22 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
23 )))
24
25 (((
26 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
27 )))
28
29 (((
30 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
31 )))
32
33 (((
34 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
35 )))
36
37
38 == 1.2  Features ==
39
40 * Support LoRaWAN v1.0.4 protocol
41 * Support peer-to-peer protocol
42 * TCXO crystal to ensure RF performance on low temperature
43 * SMD Antenna pad and i-pex antenna connector
44 * Available in different frequency LoRaWAN frequency bands.
45 * World-wide unique OTAA keys.
46 * AT Command via UART-TTL interface
47 * Firmware upgradable via UART interface
48 * Ultra-long RF range
49
50
51 == 1.3  Specification ==
52
53 * CPU: 32-bit 48 MHz
54 * Flash: 256KB
55 * RAM: 64KB
56 * Input Power Range: 1.8v ~~ 3.7v
57 * Power Consumption: < 4uA.
58 * Frequency Range: 150 MHz ~~ 960 MHz
59 * Maximum Power +22 dBm constant RF output
60 * High sensitivity: -148 dBm
61 * Temperature:
62 ** Storage: -55 ~~ +125℃
63 ** Operating: -40 ~~ +85℃
64 * Humidity:
65 ** Storage: 5 ~~ 95% (Non-Condensing)
66 ** Operating: 10 ~~ 95% (Non-Condensing)
67 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
68 * LoRa Rx current: <9 mA
69 * I/O Voltage: 3.3v
70
71
72 == 1.4  AT Command ==
73
74 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
75
76
77 == 1.5  Dimension ==
78
79 [[image:image-20220517072526-1.png]]
80
81
82
83 == 1.6  Pin Mapping ==
84
85
86 [[image:image-20220523101537-1.png]]
87
88
89
90 == 1.7  Land Pattern ==
91
92 [[image:image-20220517072821-2.png]]
93
94
95
96 = 2.  LA66 LoRaWAN Shield =
97
98
99 == 2.1  Overview ==
100
101
102 [[image:image-20220715000826-2.png||height="386" width="449"]]
103
104
105 LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
106
107 (((
108 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
109 )))
110
111 (((
112 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
113 )))
114
115 (((
116 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
117 )))
118
119 (((
120 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
121 )))
122
123
124 == 2.2  Features ==
125
126 * Arduino Shield base on LA66 LoRaWAN module
127 * Support LoRaWAN v1.0.4 protocol
128 * Support peer-to-peer protocol
129 * TCXO crystal to ensure RF performance on low temperature
130 * SMA connector
131 * Available in different frequency LoRaWAN frequency bands.
132 * World-wide unique OTAA keys.
133 * AT Command via UART-TTL interface
134 * Firmware upgradable via UART interface
135 * Ultra-long RF range
136
137
138 == 2.3  Specification ==
139
140 * CPU: 32-bit 48 MHz
141 * Flash: 256KB
142 * RAM: 64KB
143 * Input Power Range: 1.8v ~~ 3.7v
144 * Power Consumption: < 4uA.
145 * Frequency Range: 150 MHz ~~ 960 MHz
146 * Maximum Power +22 dBm constant RF output
147 * High sensitivity: -148 dBm
148 * Temperature:
149 ** Storage: -55 ~~ +125℃
150 ** Operating: -40 ~~ +85℃
151 * Humidity:
152 ** Storage: 5 ~~ 95% (Non-Condensing)
153 ** Operating: 10 ~~ 95% (Non-Condensing)
154 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
155 * LoRa Rx current: <9 mA
156 * I/O Voltage: 3.3v
157
158
159 == 2.4  Pin Mapping & LED ==
160
161
162
163 == 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
164
165
166
167 == 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
168
169
170
171 == 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
172
173
174
175 == 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
176
177
178 === 2.8.1  Items needed for update ===
179
180 1. LA66 LoRaWAN Shield
181 1. Arduino
182 1. USB TO TTL Adapter
183
184 [[image:image-20220602100052-2.png||height="385" width="600"]]
185
186
187 === 2.8.2  Connection ===
188
189
190 [[image:image-20220602101311-3.png||height="276" width="600"]]
191
192
193 (((
194 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
195 )))
196
197 (((
198 (% style="background-color:yellow" %)**GND  <-> GND
199 TXD  <->  TXD
200 RXD  <->  RXD**
201 )))
202
203
204 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
205
206 Connect USB TTL Adapter to PC after connecting the wires
207
208
209 [[image:image-20220602102240-4.png||height="304" width="600"]]
210
211
212 === 2.8.3  Upgrade steps ===
213
214
215 ==== 1.  Switch SW1 to put in ISP position ====
216
217
218 [[image:image-20220602102824-5.png||height="306" width="600"]]
219
220
221
222 ==== 2.  Press the RST switch once ====
223
224
225 [[image:image-20220602104701-12.png||height="285" width="600"]]
226
227
228
229 ==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
230
231
232 (((
233 (% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
234 )))
235
236
237 [[image:image-20220602103227-6.png]]
238
239
240 [[image:image-20220602103357-7.png]]
241
242
243
244 (% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
245 (% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
246
247
248 [[image:image-20220602103844-8.png]]
249
250
251
252 (% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
253 (% style="color:blue" %)**3. Select the bin file to burn**
254
255
256 [[image:image-20220602104144-9.png]]
257
258
259 [[image:image-20220602104251-10.png]]
260
261
262 [[image:image-20220602104402-11.png]]
263
264
265
266 (% class="wikigeneratedid" id="HClicktostartthedownload" %)
267 (% style="color:blue" %)**4. Click to start the download**
268
269 [[image:image-20220602104923-13.png]]
270
271
272
273 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
274 (% style="color:blue" %)**5. Check update process**
275
276
277 [[image:image-20220602104948-14.png]]
278
279
280
281 (% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
282 (% style="color:blue" %)**The following picture shows that the burning is successful**
283
284 [[image:image-20220602105251-15.png]]
285
286
287
288 = 3.  LA66 USB LoRaWAN Adapter =
289
290
291 == 3.1  Overview ==
292
293 [[image:image-20220715001142-3.png||height="145" width="220"]]
294
295 (% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
296
297 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
298
299 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
300
301 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
302
303 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
304
305
306 == 3.2  Features ==
307
308 * LoRaWAN USB adapter base on LA66 LoRaWAN module
309 * Ultra-long RF range
310 * Support LoRaWAN v1.0.4 protocol
311 * Support peer-to-peer protocol
312 * TCXO crystal to ensure RF performance on low temperature
313 * Spring RF antenna
314 * Available in different frequency LoRaWAN frequency bands.
315 * World-wide unique OTAA keys.
316 * AT Command via UART-TTL interface
317 * Firmware upgradable via UART interface
318 * Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
319
320
321 == 3.3  Specification ==
322
323 * CPU: 32-bit 48 MHz
324 * Flash: 256KB
325 * RAM: 64KB
326 * Input Power Range: 5v
327 * Frequency Range: 150 MHz ~~ 960 MHz
328 * Maximum Power +22 dBm constant RF output
329 * High sensitivity: -148 dBm
330 * Temperature:
331 ** Storage: -55 ~~ +125℃
332 ** Operating: -40 ~~ +85℃
333 * Humidity:
334 ** Storage: 5 ~~ 95% (Non-Condensing)
335 ** Operating: 10 ~~ 95% (Non-Condensing)
336 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
337 * LoRa Rx current: <9 mA
338
339
340 == 3.4  Pin Mapping & LED ==
341
342
343
344 == 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
345
346
347 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
348
349
350 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
351
352
353 [[image:image-20220602171217-1.png||height="538" width="800"]]
354
355
356 Open the serial port tool
357
358 [[image:image-20220602161617-8.png]]
359
360 [[image:image-20220602161718-9.png||height="457" width="800"]]
361
362
363
364 (% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
365
366 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
367
368
369 [[image:image-20220602161935-10.png||height="498" width="800"]]
370
371
372
373 (% style="color:blue" %)**3. See Uplink Command**
374
375 Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
376
377 example: AT+SENDB=01,02,8,05820802581ea0a5
378
379 [[image:image-20220602162157-11.png||height="497" width="800"]]
380
381
382
383 (% style="color:blue" %)**4. Check to see if TTN received the message**
384
385 [[image:image-20220602162331-12.png||height="420" width="800"]]
386
387
388
389 == 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
390
391
392 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
393
394
395 (% style="color:red" %)**Preconditions:**
396
397 (% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
398
399 (% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
400
401
402
403 (% style="color:blue" %)**Steps for usage:**
404
405 (% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
406
407 (% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
408
409 [[image:image-20220602115852-3.png||height="450" width="1187"]]
410
411
412
413 == 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
414
415
416 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
417
418
419 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
420
421 [[image:image-20220602171233-2.png||height="538" width="800"]]
422
423
424
425 (% style="color:blue" %)**2. Install Minicom in RPi.**
426
427 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
428
429 (% style="background-color:yellow" %)**apt update**
430
431 (% style="background-color:yellow" %)**apt install minicom**
432
433
434 Use minicom to connect to the RPI's terminal
435
436 [[image:image-20220602153146-3.png||height="439" width="500"]]
437
438
439
440 (% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
441
442 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
443
444
445 [[image:image-20220602154928-5.png||height="436" width="500"]]
446
447
448
449 (% style="color:blue" %)**4. Send Uplink message**
450
451 Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
452
453 example: AT+SENDB=01,02,8,05820802581ea0a5
454
455
456 [[image:image-20220602160339-6.png||height="517" width="600"]]
457
458
459
460 Check to see if TTN received the message
461
462 [[image:image-20220602160627-7.png||height="369" width="800"]]
463
464
465
466 == 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
467
468
469
470 == 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
471
472
473
474
475 = 4.  Order Info =
476
477
478 **Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
479
480
481 (% style="color:blue" %)**XXX**(%%): The default frequency band
482
483 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
484 * (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
485 * (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
486 * (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
487 * (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
488 * (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
489 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
490 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
491 * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
492
493 = 5.  Reference =
494
495 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
496
497
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0