Show last authors
1
2
3 **Table of Contents:**
4
5 {{toc/}}
6
7
8
9 = 1.  LA66 LoRaWAN Module =
10
11
12 == 1.1  What is LA66 LoRaWAN Module ==
13
14
15 (((
16 [[image:image-20220715000242-1.png||height="110" width="132"]]
17
18 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
19 )))
20
21 (((
22 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
23 )))
24
25 (((
26 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
27 )))
28
29 (((
30 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
31 )))
32
33 (((
34 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
35 )))
36
37
38 == 1.2  Features ==
39
40 * Support LoRaWAN v1.0.4 protocol
41 * Support peer-to-peer protocol
42 * TCXO crystal to ensure RF performance on low temperature
43 * SMD Antenna pad and i-pex antenna connector
44 * Available in different frequency LoRaWAN frequency bands.
45 * World-wide unique OTAA keys.
46 * AT Command via UART-TTL interface
47 * Firmware upgradable via UART interface
48 * Ultra-long RF range
49
50 == 1.3  Specification ==
51
52 * CPU: 32-bit 48 MHz
53 * Flash: 256KB
54 * RAM: 64KB
55 * Input Power Range: 1.8v ~~ 3.7v
56 * Power Consumption: < 4uA.
57 * Frequency Range: 150 MHz ~~ 960 MHz
58 * Maximum Power +22 dBm constant RF output
59 * High sensitivity: -148 dBm
60 * Temperature:
61 ** Storage: -55 ~~ +125℃
62 ** Operating: -40 ~~ +85℃
63 * Humidity:
64 ** Storage: 5 ~~ 95% (Non-Condensing)
65 ** Operating: 10 ~~ 95% (Non-Condensing)
66 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
67 * LoRa Rx current: <9 mA
68 * I/O Voltage: 3.3v
69
70 == 1.4  AT Command ==
71
72 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
73
74
75 == 1.5  Dimension ==
76
77 [[image:image-20220517072526-1.png]]
78
79
80
81 == 1.6  Pin Mapping ==
82
83
84 [[image:image-20220523101537-1.png]]
85
86
87
88 == 1.7  Land Pattern ==
89
90 [[image:image-20220517072821-2.png]]
91
92
93
94 = 2.  LA66 LoRaWAN Shield =
95
96
97 == 2.1  Overview ==
98
99
100 [[image:image-20220715000826-2.png||height="386" width="449"]]
101
102
103 LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
104
105 (((
106 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
107 )))
108
109 (((
110 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
111 )))
112
113 (((
114 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
115 )))
116
117 (((
118 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
119 )))
120
121
122 == 2.2  Features ==
123
124 * Arduino Shield base on LA66 LoRaWAN module
125 * Support LoRaWAN v1.0.4 protocol
126 * Support peer-to-peer protocol
127 * TCXO crystal to ensure RF performance on low temperature
128 * SMA connector
129 * Available in different frequency LoRaWAN frequency bands.
130 * World-wide unique OTAA keys.
131 * AT Command via UART-TTL interface
132 * Firmware upgradable via UART interface
133 * Ultra-long RF range
134
135 == 2.3  Specification ==
136
137 * CPU: 32-bit 48 MHz
138 * Flash: 256KB
139 * RAM: 64KB
140 * Input Power Range: 1.8v ~~ 3.7v
141 * Power Consumption: < 4uA.
142 * Frequency Range: 150 MHz ~~ 960 MHz
143 * Maximum Power +22 dBm constant RF output
144 * High sensitivity: -148 dBm
145 * Temperature:
146 ** Storage: -55 ~~ +125℃
147 ** Operating: -40 ~~ +85℃
148 * Humidity:
149 ** Storage: 5 ~~ 95% (Non-Condensing)
150 ** Operating: 10 ~~ 95% (Non-Condensing)
151 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
152 * LoRa Rx current: <9 mA
153 * I/O Voltage: 3.3v
154
155 == 2.4  Pin Mapping & LED ==
156
157
158
159 == 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
160
161
162
163 == 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
164
165
166
167 == 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
168
169
170
171 == 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
172
173
174 === 2.8.1  Items needed for update ===
175
176 1. LA66 LoRaWAN Shield
177 1. Arduino
178 1. USB TO TTL Adapter
179
180 [[image:image-20220602100052-2.png||height="385" width="600"]]
181
182
183 === 2.8.2  Connection ===
184
185
186 [[image:image-20220602101311-3.png||height="276" width="600"]]
187
188
189 (((
190 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
191 )))
192
193 (((
194 (% style="background-color:yellow" %)**GND  <-> GND
195 TXD  <->  TXD
196 RXD  <->  RXD**
197 )))
198
199
200 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
201
202 Connect USB TTL Adapter to PC after connecting the wires
203
204
205 [[image:image-20220602102240-4.png||height="304" width="600"]]
206
207
208 === 2.8.3  Upgrade steps ===
209
210
211 ==== 1.  Switch SW1 to put in ISP position ====
212
213
214 [[image:image-20220602102824-5.png||height="306" width="600"]]
215
216
217
218 ==== 2.  Press the RST switch once ====
219
220
221 [[image:image-20220602104701-12.png||height="285" width="600"]]
222
223
224
225 ==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
226
227
228 (((
229 (% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
230 )))
231
232
233 [[image:image-20220602103227-6.png]]
234
235
236 [[image:image-20220602103357-7.png]]
237
238
239
240 (% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
241 (% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
242
243
244 [[image:image-20220602103844-8.png]]
245
246
247
248 (% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
249 (% style="color:blue" %)**3. Select the bin file to burn**
250
251
252 [[image:image-20220602104144-9.png]]
253
254
255 [[image:image-20220602104251-10.png]]
256
257
258 [[image:image-20220602104402-11.png]]
259
260
261
262 (% class="wikigeneratedid" id="HClicktostartthedownload" %)
263 (% style="color:blue" %)**4. Click to start the download**
264
265 [[image:image-20220602104923-13.png]]
266
267
268
269 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
270 (% style="color:blue" %)**5. Check update process**
271
272
273 [[image:image-20220602104948-14.png]]
274
275
276
277 (% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
278 (% style="color:blue" %)**The following picture shows that the burning is successful**
279
280 [[image:image-20220602105251-15.png]]
281
282
283
284 = 3.  LA66 USB LoRaWAN Adapter =
285
286
287 == 3.1  Overview ==
288
289 [[image:image-20220715001142-3.png||height="145" width="220"]]
290
291 (% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
292
293 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
294
295 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
296
297 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
298
299 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
300
301
302 == 3.2  Features ==
303
304 * LoRaWAN USB adapter base on LA66 LoRaWAN module
305 * Ultra-long RF range
306 * Support LoRaWAN v1.0.4 protocol
307 * Support peer-to-peer protocol
308 * TCXO crystal to ensure RF performance on low temperature
309 * Spring RF antenna
310 * Available in different frequency LoRaWAN frequency bands.
311 * World-wide unique OTAA keys.
312 * AT Command via UART-TTL interface
313 * Firmware upgradable via UART interface
314
315 == 3.3  Specification ==
316
317 * CPU: 32-bit 48 MHz
318 * Flash: 256KB
319 * RAM: 64KB
320 * Input Power Range: 5v
321 * Frequency Range: 150 MHz ~~ 960 MHz
322 * Maximum Power +22 dBm constant RF output
323 * High sensitivity: -148 dBm
324 * Temperature:
325 ** Storage: -55 ~~ +125℃
326 ** Operating: -40 ~~ +85℃
327 * Humidity:
328 ** Storage: 5 ~~ 95% (Non-Condensing)
329 ** Operating: 10 ~~ 95% (Non-Condensing)
330 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
331 * LoRa Rx current: <9 mA
332
333 == 3.4  Pin Mapping & LED ==
334
335
336
337 == 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
338
339
340 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
341
342
343 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
344
345
346 [[image:image-20220602171217-1.png||height="538" width="800"]]
347
348
349 Open the serial port tool
350
351 [[image:image-20220602161617-8.png]]
352
353 [[image:image-20220602161718-9.png||height="457" width="800"]]
354
355
356
357 (% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
358
359 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
360
361
362 [[image:image-20220602161935-10.png||height="498" width="800"]]
363
364
365
366 (% style="color:blue" %)**3. See Uplink Command**
367
368 Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
369
370 example: AT+SENDB=01,02,8,05820802581ea0a5
371
372 [[image:image-20220602162157-11.png||height="497" width="800"]]
373
374
375
376 (% style="color:blue" %)**4. Check to see if TTN received the message**
377
378 [[image:image-20220602162331-12.png||height="420" width="800"]]
379
380
381
382 == 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
383
384
385 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
386
387
388 (% style="color:red" %)**Preconditions:**
389
390 (% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
391
392 (% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
393
394
395
396 (% style="color:blue" %)**Steps for usage:**
397
398 (% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
399
400 (% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
401
402 [[image:image-20220602115852-3.png||height="450" width="1187"]]
403
404
405
406 == 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
407
408
409 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
410
411
412 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
413
414 [[image:image-20220602171233-2.png||height="538" width="800"]]
415
416
417
418 (% style="color:blue" %)**2. Install Minicom in RPi.**
419
420 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
421
422 (% style="background-color:yellow" %)**apt update**
423
424 (% style="background-color:yellow" %)**apt install minicom**
425
426
427 Use minicom to connect to the RPI's terminal
428
429 [[image:image-20220602153146-3.png||height="439" width="500"]]
430
431
432
433 (% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
434
435 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
436
437
438 [[image:image-20220602154928-5.png||height="436" width="500"]]
439
440
441
442 (% style="color:blue" %)**4. Send Uplink message**
443
444 Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
445
446 example: AT+SENDB=01,02,8,05820802581ea0a5
447
448
449 [[image:image-20220602160339-6.png||height="517" width="600"]]
450
451
452
453 Check to see if TTN received the message
454
455 [[image:image-20220602160627-7.png||height="369" width="800"]]
456
457
458
459 == 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
460
461
462
463 == 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
464
465
466
467
468 = 4.  Order Info =
469
470
471 **Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
472
473
474 (% style="color:blue" %)**XXX**(%%): The default frequency band
475
476 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
477 * (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
478 * (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
479 * (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
480 * (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
481 * (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
482 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
483 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
484 * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
485
486 = 5.  Reference =
487
488 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
489
490
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0