Show last authors
1
2
3 **Table of Contents:**
4
5 {{toc/}}
6
7
8
9 = 1.  LA66 LoRaWAN Module =
10
11
12 == 1.1  What is LA66 LoRaWAN Module ==
13
14
15 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
16
17 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
18
19 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
20
21 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
22
23 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
24
25
26 == 1.2  Features ==
27
28 * Support LoRaWAN v1.0.4 protocol
29 * Support peer-to-peer protocol
30 * TCXO crystal to ensure RF performance on low temperature
31 * SMD Antenna pad and i-pex antenna connector
32 * Available in different frequency LoRaWAN frequency bands.
33 * World-wide unique OTAA keys.
34 * AT Command via UART-TTL interface
35 * Firmware upgradable via UART interface
36 * Ultra-long RF range
37
38
39
40 == 1.3  Specification ==
41
42 * CPU: 32-bit 48 MHz
43 * Flash: 256KB
44 * RAM: 64KB
45 * Input Power Range: 1.8v ~~ 3.7v
46 * Power Consumption: < 4uA.
47 * Frequency Range: 150 MHz ~~ 960 MHz
48 * Maximum Power +22 dBm constant RF output
49 * High sensitivity: -148 dBm
50 * Temperature:
51 ** Storage: -55 ~~ +125℃
52 ** Operating: -40 ~~ +85℃
53 * Humidity:
54 ** Storage: 5 ~~ 95% (Non-Condensing)
55 ** Operating: 10 ~~ 95% (Non-Condensing)
56 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
57 * LoRa Rx current: <9 mA
58 * I/O Voltage: 3.3v
59
60
61
62 == 1.4  AT Command ==
63
64 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
65
66
67 == 1.5  Dimension ==
68
69 [[image:image-20220517072526-1.png]]
70
71
72
73 == 1.6  Pin Mapping ==
74
75
76 [[image:image-20220523101537-1.png]]
77
78
79
80 == 1.7  Land Pattern ==
81
82 [[image:image-20220517072821-2.png]]
83
84
85
86 = 2.  LA66 LoRaWAN Shield =
87
88
89 == 2.1  Overview ==
90
91 LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
92
93
94 == 2.2  Features ==
95
96 * Arduino Shield base on LA66 LoRaWAN module
97 * Support LoRaWAN v1.0.4 protocol
98 * Support peer-to-peer protocol
99 * TCXO crystal to ensure RF performance on low temperature
100 * SMA connector
101 * Available in different frequency LoRaWAN frequency bands.
102 * World-wide unique OTAA keys.
103 * AT Command via UART-TTL interface
104 * Firmware upgradable via UART interface
105 * Ultra-long RF range
106
107
108
109 == 2.3  Specification ==
110
111 * CPU: 32-bit 48 MHz
112 * Flash: 256KB
113 * RAM: 64KB
114 * Input Power Range: 1.8v ~~ 3.7v
115 * Power Consumption: < 4uA.
116 * Frequency Range: 150 MHz ~~ 960 MHz
117 * Maximum Power +22 dBm constant RF output
118 * High sensitivity: -148 dBm
119 * Temperature:
120 ** Storage: -55 ~~ +125℃
121 ** Operating: -40 ~~ +85℃
122 * Humidity:
123 ** Storage: 5 ~~ 95% (Non-Condensing)
124 ** Operating: 10 ~~ 95% (Non-Condensing)
125 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
126 * LoRa Rx current: <9 mA
127 * I/O Voltage: 3.3v
128
129
130
131 == 2.4  Pin Mapping & LED ==
132
133
134
135 == 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
136
137
138
139 == 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
140
141
142
143 == 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
144
145
146
147 == 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
148
149
150 === 2.8.1  Items needed for update ===
151
152 1. LA66 LoRaWAN Shield
153 1. Arduino
154 1. USB TO TTL Adapter
155
156
157
158
159 [[image:image-20220602100052-2.png||height="385" width="600"]]
160
161
162 === 2.8.2  Connection ===
163
164
165 [[image:image-20220602101311-3.png||height="276" width="600"]]
166
167
168 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
169
170 (% style="background-color:yellow" %)**GND  <-> GND
171 TXD  <->  TXD
172 RXD  <->  RXD**
173
174
175 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
176
177 Connect USB TTL Adapter to PC after connecting the wires
178
179
180 [[image:image-20220602102240-4.png||height="304" width="600"]]
181
182
183 === 2.8.3  Upgrade steps ===
184
185
186 ==== 1.  Switch SW1 to put in ISP position ====
187
188
189 [[image:image-20220602102824-5.png||height="306" width="600"]]
190
191
192
193 ==== 2.  Press the RST switch once ====
194
195
196 [[image:image-20220602104701-12.png||height="285" width="600"]]
197
198
199
200 ==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
201
202
203 (% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
204
205
206 [[image:image-20220602103227-6.png]]
207
208
209 [[image:image-20220602103357-7.png]]
210
211
212
213 (% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
214 (% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
215
216
217 [[image:image-20220602103844-8.png]]
218
219
220
221 (% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
222 (% style="color:blue" %)**3. Select the bin file to burn**
223
224
225 [[image:image-20220602104144-9.png]]
226
227
228 [[image:image-20220602104251-10.png]]
229
230
231 [[image:image-20220602104402-11.png]]
232
233
234
235 (% class="wikigeneratedid" id="HClicktostartthedownload" %)
236 (% style="color:blue" %)**4. Click to start the download**
237
238 [[image:image-20220602104923-13.png]]
239
240
241
242 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
243 (% style="color:blue" %)**5. Check update process**
244
245
246 [[image:image-20220602104948-14.png]]
247
248
249
250 (% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
251 (% style="color:blue" %)**The following picture shows that the burning is successful**
252
253 [[image:image-20220602105251-15.png]]
254
255
256
257 = 3.  LA66 USB LoRaWAN Adapter =
258
259
260 == 3.1  Overview ==
261
262 LA66 USB LoRaWAN Adapter is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
263
264
265 == 3.2  Features ==
266
267 * LoRaWAN USB adapter base on LA66 LoRaWAN module
268 * Ultra-long RF range
269 * Support LoRaWAN v1.0.4 protocol
270 * Support peer-to-peer protocol
271 * TCXO crystal to ensure RF performance on low temperature
272 * Spring RF antenna
273 * Available in different frequency LoRaWAN frequency bands.
274 * World-wide unique OTAA keys.
275 * AT Command via UART-TTL interface
276 * Firmware upgradable via UART interface
277
278
279
280 == 3.3  Specification ==
281
282 * CPU: 32-bit 48 MHz
283 * Flash: 256KB
284 * RAM: 64KB
285 * Input Power Range: 5v
286 * Frequency Range: 150 MHz ~~ 960 MHz
287 * Maximum Power +22 dBm constant RF output
288 * High sensitivity: -148 dBm
289 * Temperature:
290 ** Storage: -55 ~~ +125℃
291 ** Operating: -40 ~~ +85℃
292 * Humidity:
293 ** Storage: 5 ~~ 95% (Non-Condensing)
294 ** Operating: 10 ~~ 95% (Non-Condensing)
295 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
296 * LoRa Rx current: <9 mA
297
298
299
300 == 3.4  Pin Mapping & LED ==
301
302
303
304 == 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
305
306
307 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
308
309
310 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
311
312
313 [[image:image-20220602171217-1.png||height="538" width="800"]]
314
315
316 Open the serial port tool
317
318 [[image:image-20220602161617-8.png]]
319
320 [[image:image-20220602161718-9.png||height="457" width="800"]]
321
322
323
324 (% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
325
326 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
327
328
329 [[image:image-20220602161935-10.png||height="498" width="800"]]
330
331
332
333 (% style="color:blue" %)**3. See Uplink Command**
334
335 Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
336
337 example: AT+SENDB=01,02,8,05820802581ea0a5
338
339 [[image:image-20220602162157-11.png||height="497" width="800"]]
340
341
342
343 (% style="color:blue" %)**4. Check to see if TTN received the message**
344
345 [[image:image-20220602162331-12.png||height="420" width="800"]]
346
347
348
349 == 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
350
351
352 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
353
354
355 (% style="color:red" %)**Preconditions:**
356
357 (% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
358
359 (% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
360
361
362
363 (% style="color:blue" %)**Steps for usage:**
364
365 (% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
366
367 (% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
368
369 [[image:image-20220602115852-3.png||height="450" width="1187"]]
370
371
372
373 == 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
374
375
376 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
377
378
379 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
380
381 [[image:image-20220602171233-2.png||height="538" width="800"]]
382
383
384
385 (% style="color:blue" %)**2. Install Minicom in RPi.**
386
387 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
388
389 (% style="background-color:yellow" %)**apt update**
390
391 (% style="background-color:yellow" %)**apt install minicom**
392
393
394 Use minicom to connect to the RPI's terminal
395
396 [[image:image-20220602153146-3.png||height="439" width="500"]]
397
398
399
400 (% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
401
402 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
403
404
405 [[image:image-20220602154928-5.png||height="436" width="500"]]
406
407
408
409 (% style="color:blue" %)**4. Send Uplink message**
410
411 Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
412
413 example: AT+SENDB=01,02,8,05820802581ea0a5
414
415
416 [[image:image-20220602160339-6.png||height="517" width="600"]]
417
418
419
420 Check to see if TTN received the message
421
422 [[image:image-20220602160627-7.png||height="369" width="800"]]
423
424
425
426 == 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
427
428
429
430 == 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
431
432
433
434
435 = 4.  Order Info =
436
437
438 **Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
439
440
441 (% style="color:blue" %)**XXX**(%%): The default frequency band
442
443 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
444 * (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
445 * (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
446 * (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
447 * (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
448 * (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
449 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
450 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
451 * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
452
453
454
455 = 5.  Reference =
456
457 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
458
459
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0