Show last authors
1
2
3 **Table of Contents:**
4
5 {{toc/}}
6
7
8
9 = 1.  LA66 LoRaWAN Module =
10
11
12 == 1.1  What is LA66 LoRaWAN Module ==
13
14
15 (((
16 (((
17 [[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 )))
19
20 (((
21
22 )))
23
24 (((
25 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
26 )))
27 )))
28
29 (((
30 (((
31 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
32 )))
33 )))
34
35 (((
36 (((
37 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
38 )))
39
40 (((
41 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
42 )))
43 )))
44
45 (((
46 (((
47 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
48 )))
49 )))
50
51
52
53 == 1.2  Features ==
54
55 * Support LoRaWAN v1.0.4 protocol
56 * Support peer-to-peer protocol
57 * TCXO crystal to ensure RF performance on low temperature
58 * SMD Antenna pad and i-pex antenna connector
59 * Available in different frequency LoRaWAN frequency bands.
60 * World-wide unique OTAA keys.
61 * AT Command via UART-TTL interface
62 * Firmware upgradable via UART interface
63 * Ultra-long RF range
64
65 == 1.3  Specification ==
66
67 * CPU: 32-bit 48 MHz
68 * Flash: 256KB
69 * RAM: 64KB
70 * Input Power Range: 1.8v ~~ 3.7v
71 * Power Consumption: < 4uA.
72 * Frequency Range: 150 MHz ~~ 960 MHz
73 * Maximum Power +22 dBm constant RF output
74 * High sensitivity: -148 dBm
75 * Temperature:
76 ** Storage: -55 ~~ +125℃
77 ** Operating: -40 ~~ +85℃
78 * Humidity:
79 ** Storage: 5 ~~ 95% (Non-Condensing)
80 ** Operating: 10 ~~ 95% (Non-Condensing)
81 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
82 * LoRa Rx current: <9 mA
83 * I/O Voltage: 3.3v
84
85 == 1.4  AT Command ==
86
87
88 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
89
90
91
92 == 1.5  Dimension ==
93
94 [[image:image-20220718094750-3.png]]
95
96
97
98 == 1.6  Pin Mapping ==
99
100 [[image:image-20220720111850-1.png]]
101
102
103
104 == 1.7  Land Pattern ==
105
106 [[image:image-20220517072821-2.png]]
107
108
109
110 = 2.  LA66 LoRaWAN Shield =
111
112
113 == 2.1  Overview ==
114
115
116 (((
117 [[image:image-20220715000826-2.png||height="145" width="220"]]
118 )))
119
120 (((
121
122 )))
123
124 (((
125 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
126 )))
127
128 (((
129 (((
130 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
131 )))
132 )))
133
134 (((
135 (((
136 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
137 )))
138 )))
139
140 (((
141 (((
142 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
143 )))
144 )))
145
146 (((
147 (((
148 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
149 )))
150 )))
151
152
153
154 == 2.2  Features ==
155
156 * Arduino Shield base on LA66 LoRaWAN module
157 * Support LoRaWAN v1.0.4 protocol
158 * Support peer-to-peer protocol
159 * TCXO crystal to ensure RF performance on low temperature
160 * SMA connector
161 * Available in different frequency LoRaWAN frequency bands.
162 * World-wide unique OTAA keys.
163 * AT Command via UART-TTL interface
164 * Firmware upgradable via UART interface
165 * Ultra-long RF range
166
167 == 2.3  Specification ==
168
169 * CPU: 32-bit 48 MHz
170 * Flash: 256KB
171 * RAM: 64KB
172 * Input Power Range: 1.8v ~~ 3.7v
173 * Power Consumption: < 4uA.
174 * Frequency Range: 150 MHz ~~ 960 MHz
175 * Maximum Power +22 dBm constant RF output
176 * High sensitivity: -148 dBm
177 * Temperature:
178 ** Storage: -55 ~~ +125℃
179 ** Operating: -40 ~~ +85℃
180 * Humidity:
181 ** Storage: 5 ~~ 95% (Non-Condensing)
182 ** Operating: 10 ~~ 95% (Non-Condensing)
183 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
184 * LoRa Rx current: <9 mA
185 * I/O Voltage: 3.3v
186
187 == 2.4  LED ==
188
189
190 ~1. The LED lights up red when there is an upstream data packet
191 2. When the network is successfully connected, the green light will be on for 5 seconds
192 3. Purple light on when receiving downlink data packets
193
194
195
196 == 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
197
198
199 **Show connection diagram:**
200
201
202 [[image:image-20220723170210-2.png||height="908" width="681"]]
203
204
205
206 (% style="color:blue" %)**1.  open Arduino IDE**
207
208
209 [[image:image-20220723170545-4.png]]
210
211
212
213 (% style="color:blue" %)**2.  Open project**
214
215
216 LA66-LoRaWAN-shield-AT-command-via-Arduino-UNO source code link: [[https:~~/~~/www.dropbox.com/sh/cx0pspkwu62pr97/AAAbKh2ioPdZfSDtdDpooYqha?dl=0>>https://www.dropbox.com/sh/cx0pspkwu62pr97/AAAbKh2ioPdZfSDtdDpooYqha?dl=0]]
217
218 [[image:image-20220726135239-1.png]]
219
220
221 (% style="color:blue" %)**3.  Click the button marked 1 in the figure to compile, and after the compilation is complete, click the button marked 2 in the figure to upload**
222
223 [[image:image-20220726135356-2.png]]
224
225
226 (% style="color:blue" %)**4.  After the upload is successful, open the serial port monitoring and send the AT command**
227
228
229 [[image:image-20220723172235-7.png||height="480" width="1027"]]
230
231
232
233 == 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
234
235
236 (% style="color:blue" %)**1.  Open project**
237
238
239 Join-TTN-network source code link: [[https:~~/~~/www.dropbox.com/sh/0sjyncafa0gjv00/AACC2m1orov-QHRkvH8-ddCka?dl=0>>https://www.dropbox.com/sh/0sjyncafa0gjv00/AACC2m1orov-QHRkvH8-ddCka?dl=0]]
240
241
242 [[image:image-20220723172502-8.png]]
243
244
245
246 (% style="color:blue" %)**2.  Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets**
247
248
249 [[image:image-20220723172938-9.png||height="652" width="1050"]]
250
251
252
253 == 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in Node-RED. ==
254
255
256 (% style="color:blue" %)**1.  Open project**
257
258
259 Log-Temperature-Sensor-and-send-data-to-TTN source code link: [[https:~~/~~/www.dropbox.com/sh/0aagmrpec1lxmva/AABMXWVMSHG9dK1_Zv_7xOmCa?dl=0>>https://www.dropbox.com/sh/0aagmrpec1lxmva/AABMXWVMSHG9dK1_Zv_7xOmCa?dl=0]]
260
261
262 [[image:image-20220723173341-10.png||height="581" width="1014"]]
263
264
265
266 (% style="color:blue" %)**2.  Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets**
267
268
269 [[image:image-20220723173950-11.png||height="665" width="1012"]]
270
271
272
273 (% style="color:blue" %)**3.  Integration into Node-red via TTNV3**
274
275 For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
276
277 [[image:image-20220723175700-12.png||height="602" width="995"]]
278
279
280
281 == 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
282
283
284 === 2.8.1  Items needed for update ===
285
286
287 1. LA66 LoRaWAN Shield
288 1. Arduino
289 1. USB TO TTL Adapter
290
291 [[image:image-20220602100052-2.png||height="385" width="600"]]
292
293
294 === 2.8.2  Connection ===
295
296
297 [[image:image-20220602101311-3.png||height="276" width="600"]]
298
299
300 (((
301 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
302 )))
303
304 (((
305 (% style="background-color:yellow" %)**GND  <-> GND
306 TXD  <->  TXD
307 RXD  <->  RXD**
308 )))
309
310
311 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
312
313 Connect USB TTL Adapter to PC after connecting the wires
314
315
316 [[image:image-20220602102240-4.png||height="304" width="600"]]
317
318
319 === 2.8.3  Upgrade steps ===
320
321
322 ==== (% style="color:blue" %)1.  Switch SW1 to put in ISP position(%%) ====
323
324
325 [[image:image-20220602102824-5.png||height="306" width="600"]]
326
327
328
329 ==== (% style="color:blue" %)2.  Press the RST switch once(%%) ====
330
331
332 [[image:image-20220602104701-12.png||height="285" width="600"]]
333
334
335
336 ==== (% style="color:blue" %)3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade(%%) ====
337
338
339 (((
340 (% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
341 )))
342
343
344 [[image:image-20220602103227-6.png]]
345
346
347 [[image:image-20220602103357-7.png]]
348
349
350
351 (% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
352 (% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
353
354
355 [[image:image-20220602103844-8.png]]
356
357
358
359 (% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
360 (% style="color:blue" %)**3. Select the bin file to burn**
361
362
363 [[image:image-20220602104144-9.png]]
364
365
366 [[image:image-20220602104251-10.png]]
367
368
369 [[image:image-20220602104402-11.png]]
370
371
372
373 (% class="wikigeneratedid" id="HClicktostartthedownload" %)
374 (% style="color:blue" %)**4. Click to start the download**
375
376 [[image:image-20220602104923-13.png]]
377
378
379
380 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
381 (% style="color:blue" %)**5. Check update process**
382
383
384 [[image:image-20220602104948-14.png]]
385
386
387
388 (% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
389 (% style="color:blue" %)**The following picture shows that the burning is successful**
390
391 [[image:image-20220602105251-15.png]]
392
393
394
395 = 3.  LA66 USB LoRaWAN Adapter =
396
397
398 == 3.1  Overview ==
399
400
401 [[image:image-20220715001142-3.png||height="145" width="220"]]
402
403
404 (((
405 (% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
406 )))
407
408 (((
409 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
410 )))
411
412 (((
413 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
414 )))
415
416 (((
417 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
418 )))
419
420 (((
421 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
422 )))
423
424
425
426 == 3.2  Features ==
427
428 * LoRaWAN USB adapter base on LA66 LoRaWAN module
429 * Ultra-long RF range
430 * Support LoRaWAN v1.0.4 protocol
431 * Support peer-to-peer protocol
432 * TCXO crystal to ensure RF performance on low temperature
433 * Spring RF antenna
434 * Available in different frequency LoRaWAN frequency bands.
435 * World-wide unique OTAA keys.
436 * AT Command via UART-TTL interface
437 * Firmware upgradable via UART interface
438 * Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
439
440 == 3.3  Specification ==
441
442 * CPU: 32-bit 48 MHz
443 * Flash: 256KB
444 * RAM: 64KB
445 * Input Power Range: 5v
446 * Frequency Range: 150 MHz ~~ 960 MHz
447 * Maximum Power +22 dBm constant RF output
448 * High sensitivity: -148 dBm
449 * Temperature:
450 ** Storage: -55 ~~ +125℃
451 ** Operating: -40 ~~ +85℃
452 * Humidity:
453 ** Storage: 5 ~~ 95% (Non-Condensing)
454 ** Operating: 10 ~~ 95% (Non-Condensing)
455 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
456 * LoRa Rx current: <9 mA
457
458 == 3.4  Pin Mapping & LED ==
459
460
461
462 == 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
463
464
465 (((
466 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
467 )))
468
469
470 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
471
472
473 [[image:image-20220723100027-1.png]]
474
475
476 Open the serial port tool
477
478 [[image:image-20220602161617-8.png]]
479
480 [[image:image-20220602161718-9.png||height="457" width="800"]]
481
482
483
484 (% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
485
486 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
487
488
489 [[image:image-20220602161935-10.png||height="498" width="800"]]
490
491
492
493 (% style="color:blue" %)**3. See Uplink Command**
494
495 Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
496
497 example: AT+SENDB=01,02,8,05820802581ea0a5
498
499 [[image:image-20220602162157-11.png||height="497" width="800"]]
500
501
502
503 (% style="color:blue" %)**4. Check to see if TTN received the message**
504
505 [[image:image-20220602162331-12.png||height="420" width="800"]]
506
507
508
509 == 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
510
511
512 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
513
514 (**Raspberry Pi example: **[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py]])
515
516 (% style="color:red" %)**Preconditions:**
517
518 (% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
519
520 (% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
521
522
523
524 (% style="color:blue" %)**Steps for usage:**
525
526 (% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
527
528 (% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
529
530 [[image:image-20220602115852-3.png||height="450" width="1187"]]
531
532
533
534 == 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
535
536
537 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
538
539
540 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
541
542 [[image:image-20220723100439-2.png]]
543
544
545
546 (% style="color:blue" %)**2. Install Minicom in RPi.**
547
548 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
549
550 (% style="background-color:yellow" %)**apt update**
551
552 (% style="background-color:yellow" %)**apt install minicom**
553
554
555 Use minicom to connect to the RPI's terminal
556
557 [[image:image-20220602153146-3.png||height="439" width="500"]]
558
559
560
561 (% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
562
563 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
564
565
566 [[image:image-20220602154928-5.png||height="436" width="500"]]
567
568
569
570 (% style="color:blue" %)**4. Send Uplink message**
571
572 Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
573
574 example: AT+SENDB=01,02,8,05820802581ea0a5
575
576
577 [[image:image-20220602160339-6.png||height="517" width="600"]]
578
579
580
581 Check to see if TTN received the message
582
583 [[image:image-20220602160627-7.png||height="369" width="800"]]
584
585
586
587 == 3.8  Example: Use of LA66 USB LoRaWAN Adapter and APP sample process and DRAGINO-LA66-APP. ==
588
589
590 === 3.8.1  DRAGINO-LA66-APP ===
591
592
593 [[image:image-20220723102027-3.png]]
594
595
596
597 ==== (% style="color:blue" %)**Overview:**(%%) ====
598
599
600 (((
601 DRAGINO-LA66-APP is a mobile APP for LA66 USB LoRaWAN Adapter and APP sample process. DRAGINO-LA66-APP can obtain the positioning information of the mobile phone and send it to the LoRaWAN platform through the LA66 USB LoRaWAN Adapter.
602 )))
603
604 (((
605 View the communication signal strength between the node and the gateway through the RSSI value(DRAGINO-LA66-APP currently only supports Android system)
606 )))
607
608
609
610 ==== (% style="color:blue" %)**Conditions of Use:**(%%) ====
611
612
613 Requires a type-c to USB adapter
614
615 [[image:image-20220723104754-4.png]]
616
617
618
619 ==== (% style="color:blue" %)**Use of APP:**(%%) ====
620
621
622 Function and page introduction
623
624 [[image:image-20220723113448-7.png||height="1481" width="670"]]
625
626
627 1.Display LA66 USB LoRaWAN Module connection status
628
629 2.Check and reconnect
630
631 3.Turn send timestamps on or off
632
633 4.Display LoRaWan connection status
634
635 5.Check LoRaWan connection status
636
637 6.The RSSI value of the node when the ACK is received
638
639 7.Node's Signal Strength Icon
640
641 8.Set the packet sending interval of the node in seconds
642
643 9.AT command input box
644
645 10.Send AT command button
646
647 11.Node log box
648
649 12.clear log button
650
651 13.exit button
652
653
654 LA66 USB LoRaWAN Module not connected
655
656 [[image:image-20220723110520-5.png||height="903" width="677"]]
657
658
659
660 Connect LA66 USB LoRaWAN Module
661
662 [[image:image-20220723110626-6.png||height="906" width="680"]]
663
664
665
666 === 3.8.2  Use DRAGINO-LA66-APP to obtain positioning information and send it to TTNV3 through LA66 USB LoRaWAN Adapter and integrate it into Node-RED ===
667
668
669 (% style="color:blue" %)**1.  Register LA66 USB LoRaWAN Module to TTNV3**
670
671 [[image:image-20220723134549-8.png]]
672
673
674
675 (% style="color:blue" %)**2.  Open Node-RED,And import the JSON file to generate the flow**
676
677 Sample JSON file please go to this link to download:放置JSON文件的链接
678
679 For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
680
681 The following is the positioning effect map
682
683 [[image:image-20220723144339-1.png]]
684
685
686
687 == 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
688
689
690 The LA66 USB LoRaWAN Adapter is the same as the LA66 LoRaWAN Shield update method
691
692 Just use the yellow jumper cap to short the BOOT corner and the RX corner, and then press the RESET button (without the jumper cap, you can directly short the BOOT corner and the RX corner with a wire to achieve the same effect)
693
694 [[image:image-20220723150132-2.png]]
695
696
697
698 = 4.  FAQ =
699
700
701 == 4.1  How to Compile Source Code for LA66? ==
702
703
704 Compile and Upload Code to ASR6601 Platform :[[Instruction>>Compile and Upload Code to ASR6601 Platform]]
705
706
707
708 = 5.  Order Info =
709
710
711 **Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
712
713
714 (% style="color:blue" %)**XXX**(%%): The default frequency band
715
716 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
717 * (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
718 * (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
719 * (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
720 * (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
721 * (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
722 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
723 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
724 * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
725
726 = 6.  Reference =
727
728
729 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0