Show last authors
1
2
3 **Table of Contents:**
4
5 {{toc/}}
6
7
8
9 = 1.  LA66 LoRaWAN Module =
10
11
12 == 1.1  What is LA66 LoRaWAN Module ==
13
14
15 (((
16 (((
17 [[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 )))
19
20 (((
21
22 )))
23
24 (((
25 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
26 )))
27 )))
28
29 (((
30 (((
31 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
32 )))
33 )))
34
35 (((
36 (((
37 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
38 )))
39
40 (((
41 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
42 )))
43 )))
44
45 (((
46 (((
47 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
48 )))
49 )))
50
51
52
53 == 1.2  Features ==
54
55 * Support LoRaWAN v1.0.4 protocol
56 * Support peer-to-peer protocol
57 * TCXO crystal to ensure RF performance on low temperature
58 * SMD Antenna pad and i-pex antenna connector
59 * Available in different frequency LoRaWAN frequency bands.
60 * World-wide unique OTAA keys.
61 * AT Command via UART-TTL interface
62 * Firmware upgradable via UART interface
63 * Ultra-long RF range
64
65 == 1.3  Specification ==
66
67 * CPU: 32-bit 48 MHz
68 * Flash: 256KB
69 * RAM: 64KB
70 * Input Power Range: 1.8v ~~ 3.7v
71 * Power Consumption: < 4uA.
72 * Frequency Range: 150 MHz ~~ 960 MHz
73 * Maximum Power +22 dBm constant RF output
74 * High sensitivity: -148 dBm
75 * Temperature:
76 ** Storage: -55 ~~ +125℃
77 ** Operating: -40 ~~ +85℃
78 * Humidity:
79 ** Storage: 5 ~~ 95% (Non-Condensing)
80 ** Operating: 10 ~~ 95% (Non-Condensing)
81 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
82 * LoRa Rx current: <9 mA
83 * I/O Voltage: 3.3v
84
85 == 1.4  AT Command ==
86
87
88 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
89
90
91
92 == 1.5  Dimension ==
93
94 [[image:image-20220718094750-3.png]]
95
96
97
98 == 1.6  Pin Mapping ==
99
100 [[image:image-20220720111850-1.png]]
101
102
103
104 == 1.7  Land Pattern ==
105
106 [[image:image-20220517072821-2.png]]
107
108
109
110 = 2.  LA66 LoRaWAN Shield =
111
112
113 == 2.1  Overview ==
114
115
116 (((
117 [[image:image-20220715000826-2.png||height="145" width="220"]]
118 )))
119
120 (((
121
122 )))
123
124 (((
125 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
126 )))
127
128 (((
129 (((
130 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
131 )))
132 )))
133
134 (((
135 (((
136 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
137 )))
138 )))
139
140 (((
141 (((
142 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
143 )))
144 )))
145
146 (((
147 (((
148 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
149 )))
150 )))
151
152
153
154 == 2.2  Features ==
155
156 * Arduino Shield base on LA66 LoRaWAN module
157 * Support LoRaWAN v1.0.4 protocol
158 * Support peer-to-peer protocol
159 * TCXO crystal to ensure RF performance on low temperature
160 * SMA connector
161 * Available in different frequency LoRaWAN frequency bands.
162 * World-wide unique OTAA keys.
163 * AT Command via UART-TTL interface
164 * Firmware upgradable via UART interface
165 * Ultra-long RF range
166
167 == 2.3  Specification ==
168
169 * CPU: 32-bit 48 MHz
170 * Flash: 256KB
171 * RAM: 64KB
172 * Input Power Range: 1.8v ~~ 3.7v
173 * Power Consumption: < 4uA.
174 * Frequency Range: 150 MHz ~~ 960 MHz
175 * Maximum Power +22 dBm constant RF output
176 * High sensitivity: -148 dBm
177 * Temperature:
178 ** Storage: -55 ~~ +125℃
179 ** Operating: -40 ~~ +85℃
180 * Humidity:
181 ** Storage: 5 ~~ 95% (Non-Condensing)
182 ** Operating: 10 ~~ 95% (Non-Condensing)
183 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
184 * LoRa Rx current: <9 mA
185 * I/O Voltage: 3.3v
186
187 == 2.4  LED ==
188
189 ~1. The LED lights up red when there is an upstream data packet
190 2. When the network is successfully connected, the green light will be on for 5 seconds
191 3. Purple light on when receiving downlink data packets
192
193
194 == 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
195
196 Show connection diagram:
197
198 [[image:image-20220723170210-2.png||height="908" width="681"]]
199
200 1.open Arduino IDE
201
202 [[image:image-20220723170545-4.png]]
203
204 2.Open project
205
206 [[image:image-20220723170750-5.png||height="533" width="930"]]
207
208 3.Click the button marked 1 in the figure to compile, and after the compilation is complete, click the button marked 2 in the figure to upload
209
210 [[image:image-20220723171228-6.png]]
211
212 4.After the upload is successful, open the serial port monitoring and send the AT command
213
214 [[image:image-20220723172235-7.png||height="480" width="1027"]]
215
216 == 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
217
218 1.Open project
219
220 [[image:image-20220723172502-8.png]]
221
222 2.Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets
223
224 [[image:image-20220723172938-9.png||height="652" width="1050"]]
225
226
227
228 == 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in Node-RED. ==
229
230
231 **1.  Open project**
232
233
234 Log-Temperature-Sensor-and-send-data-to-TTN source code link: [[https:~~/~~/www.dropbox.com/sh/trqitpm9adkupva/AAAE542NzwlHubIAIDxe6IWFa?dl=0>>https://www.dropbox.com/sh/trqitpm9adkupva/AAAE542NzwlHubIAIDxe6IWFa?dl=0]]
235
236
237 [[image:image-20220723173341-10.png||height="581" width="1014"]]
238
239
240
241 **2.  Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets**
242
243
244 [[image:image-20220723173950-11.png||height="665" width="1012"]]
245
246
247
248 **3.  Integration into Node-red via TTNV3**
249
250 For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
251
252 [[image:image-20220723175700-12.png||height="602" width="995"]]
253
254
255
256 == 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
257
258
259 === 2.8.1  Items needed for update ===
260
261
262 1. LA66 LoRaWAN Shield
263 1. Arduino
264 1. USB TO TTL Adapter
265
266 [[image:image-20220602100052-2.png||height="385" width="600"]]
267
268
269 === 2.8.2  Connection ===
270
271
272 [[image:image-20220602101311-3.png||height="276" width="600"]]
273
274
275 (((
276 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
277 )))
278
279 (((
280 (% style="background-color:yellow" %)**GND  <-> GND
281 TXD  <->  TXD
282 RXD  <->  RXD**
283 )))
284
285
286 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
287
288 Connect USB TTL Adapter to PC after connecting the wires
289
290
291 [[image:image-20220602102240-4.png||height="304" width="600"]]
292
293
294 === 2.8.3  Upgrade steps ===
295
296
297 ==== (% style="color:blue" %)1.  Switch SW1 to put in ISP position(%%) ====
298
299
300 [[image:image-20220602102824-5.png||height="306" width="600"]]
301
302
303
304 ==== (% style="color:blue" %)2.  Press the RST switch once(%%) ====
305
306
307 [[image:image-20220602104701-12.png||height="285" width="600"]]
308
309
310
311 ==== (% style="color:blue" %)3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade(%%) ====
312
313
314 (((
315 (% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
316 )))
317
318
319 [[image:image-20220602103227-6.png]]
320
321
322 [[image:image-20220602103357-7.png]]
323
324
325
326 (% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
327 (% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
328
329
330 [[image:image-20220602103844-8.png]]
331
332
333
334 (% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
335 (% style="color:blue" %)**3. Select the bin file to burn**
336
337
338 [[image:image-20220602104144-9.png]]
339
340
341 [[image:image-20220602104251-10.png]]
342
343
344 [[image:image-20220602104402-11.png]]
345
346
347
348 (% class="wikigeneratedid" id="HClicktostartthedownload" %)
349 (% style="color:blue" %)**4. Click to start the download**
350
351 [[image:image-20220602104923-13.png]]
352
353
354
355 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
356 (% style="color:blue" %)**5. Check update process**
357
358
359 [[image:image-20220602104948-14.png]]
360
361
362
363 (% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
364 (% style="color:blue" %)**The following picture shows that the burning is successful**
365
366 [[image:image-20220602105251-15.png]]
367
368
369
370 = 3.  LA66 USB LoRaWAN Adapter =
371
372
373 == 3.1  Overview ==
374
375
376 [[image:image-20220715001142-3.png||height="145" width="220"]]
377
378
379 (((
380 (% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
381 )))
382
383 (((
384 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
385 )))
386
387 (((
388 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
389 )))
390
391 (((
392 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
393 )))
394
395 (((
396 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
397 )))
398
399
400
401 == 3.2  Features ==
402
403 * LoRaWAN USB adapter base on LA66 LoRaWAN module
404 * Ultra-long RF range
405 * Support LoRaWAN v1.0.4 protocol
406 * Support peer-to-peer protocol
407 * TCXO crystal to ensure RF performance on low temperature
408 * Spring RF antenna
409 * Available in different frequency LoRaWAN frequency bands.
410 * World-wide unique OTAA keys.
411 * AT Command via UART-TTL interface
412 * Firmware upgradable via UART interface
413 * Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
414
415
416
417 == 3.3  Specification ==
418
419 * CPU: 32-bit 48 MHz
420 * Flash: 256KB
421 * RAM: 64KB
422 * Input Power Range: 5v
423 * Frequency Range: 150 MHz ~~ 960 MHz
424 * Maximum Power +22 dBm constant RF output
425 * High sensitivity: -148 dBm
426 * Temperature:
427 ** Storage: -55 ~~ +125℃
428 ** Operating: -40 ~~ +85℃
429 * Humidity:
430 ** Storage: 5 ~~ 95% (Non-Condensing)
431 ** Operating: 10 ~~ 95% (Non-Condensing)
432 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
433 * LoRa Rx current: <9 mA
434
435
436
437 == 3.4  Pin Mapping & LED ==
438
439
440
441 == 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
442
443
444 (((
445 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
446 )))
447
448
449 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
450
451
452 [[image:image-20220723100027-1.png]]
453
454
455 Open the serial port tool
456
457 [[image:image-20220602161617-8.png]]
458
459 [[image:image-20220602161718-9.png||height="457" width="800"]]
460
461
462
463 (% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
464
465 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
466
467
468 [[image:image-20220602161935-10.png||height="498" width="800"]]
469
470
471
472 (% style="color:blue" %)**3. See Uplink Command**
473
474 Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
475
476 example: AT+SENDB=01,02,8,05820802581ea0a5
477
478 [[image:image-20220602162157-11.png||height="497" width="800"]]
479
480
481
482 (% style="color:blue" %)**4. Check to see if TTN received the message**
483
484 [[image:image-20220602162331-12.png||height="420" width="800"]]
485
486
487
488 == 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
489
490
491 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
492
493 (**Raspberry Pi example: **[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py]])
494
495 (% style="color:red" %)**Preconditions:**
496
497 (% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
498
499 (% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
500
501
502
503 (% style="color:blue" %)**Steps for usage:**
504
505 (% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
506
507 (% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
508
509 [[image:image-20220602115852-3.png||height="450" width="1187"]]
510
511
512
513 == 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
514
515
516 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
517
518
519 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
520
521 [[image:image-20220723100439-2.png]]
522
523
524
525 (% style="color:blue" %)**2. Install Minicom in RPi.**
526
527 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
528
529 (% style="background-color:yellow" %)**apt update**
530
531 (% style="background-color:yellow" %)**apt install minicom**
532
533
534 Use minicom to connect to the RPI's terminal
535
536 [[image:image-20220602153146-3.png||height="439" width="500"]]
537
538
539
540 (% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
541
542 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
543
544
545 [[image:image-20220602154928-5.png||height="436" width="500"]]
546
547
548
549 (% style="color:blue" %)**4. Send Uplink message**
550
551 Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
552
553 example: AT+SENDB=01,02,8,05820802581ea0a5
554
555
556 [[image:image-20220602160339-6.png||height="517" width="600"]]
557
558
559
560 Check to see if TTN received the message
561
562 [[image:image-20220602160627-7.png||height="369" width="800"]]
563
564
565
566 == 3.8  Example: Use of LA66 USB LoRaWAN Adapter and APP sample process and DRAGINO-LA66-APP. ==
567
568
569 === 3.8.1 DRAGINO-LA66-APP ===
570
571
572 [[image:image-20220723102027-3.png]]
573
574
575
576 ==== (% style="color:blue" %)**Overview:**(%%) ====
577
578
579 DRAGINO-LA66-APP is a mobile APP for LA66 USB LoRaWAN Adapter and APP sample process. DRAGINO-LA66-APP can obtain the positioning information of the mobile phone and send it to the LoRaWAN platform through the LA66 USB LoRaWAN Adapter.
580
581 View the communication signal strength between the node and the gateway through the RSSI value(DRAGINO-LA66-APP currently only supports Android system)
582
583
584
585 ==== (% style="color:blue" %)**Conditions of Use:**(%%) ====
586
587
588 Requires a type-c to USB adapter
589
590 [[image:image-20220723104754-4.png]]
591
592
593
594 ==== (% style="color:blue" %)**Use of APP:**(%%) ====
595
596
597 Function and page introduction
598
599 [[image:image-20220723113448-7.png||height="1481" width="670"]]
600
601 1.Display LA66 USB LoRaWAN Module connection status
602
603 2.Check and reconnect
604
605 3.Turn send timestamps on or off
606
607 4.Display LoRaWan connection status
608
609 5.Check LoRaWan connection status
610
611 6.The RSSI value of the node when the ACK is received
612
613 7.Node's Signal Strength Icon
614
615 8.Set the packet sending interval of the node in seconds
616
617 9.AT command input box
618
619 10.Send AT command button
620
621 11.Node log box
622
623 12.clear log button
624
625 13.exit button
626
627
628 LA66 USB LoRaWAN Module not connected
629
630 [[image:image-20220723110520-5.png||height="903" width="677"]]
631
632
633
634 Connect LA66 USB LoRaWAN Module
635
636 [[image:image-20220723110626-6.png||height="906" width="680"]]
637
638
639
640 === 3.8.2 Use DRAGINO-LA66-APP to obtain positioning information and send it to TTNV3 through LA66 USB LoRaWAN Adapter and integrate it into Node-RED ===
641
642
643 **1.  Register LA66 USB LoRaWAN Module to TTNV3**
644
645 [[image:image-20220723134549-8.png]]
646
647
648
649 **2.  Open Node-RED,And import the JSON file to generate the flow**
650
651 Sample JSON file please go to this link to download:放置JSON文件的链接
652
653 For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
654
655 The following is the positioning effect map
656
657 [[image:image-20220723144339-1.png]]
658
659
660
661 == 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
662
663
664 The LA66 USB LoRaWAN Adapter is the same as the LA66 LoRaWAN Shield update method
665
666 Just use the yellow jumper cap to short the BOOT corner and the RX corner, and then press the RESET button (without the jumper cap, you can directly short the BOOT corner and the RX corner with a wire to achieve the same effect)
667
668 [[image:image-20220723150132-2.png]]
669
670
671
672 = 4.  Order Info =
673
674
675 **Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
676
677
678 (% style="color:blue" %)**XXX**(%%): The default frequency band
679
680 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
681 * (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
682 * (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
683 * (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
684 * (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
685 * (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
686 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
687 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
688 * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
689
690
691 = 5.  Reference =
692
693
694 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0