Wiki source code of LA66 LoRaWAN Module

Version 134.10 by Xiaoling on 2022/07/26 10:47

Show last authors
1
2
3 **Table of Contents:**
4
5 {{toc/}}
6
7
8
9 = 1.  LA66 LoRaWAN Module =
10
11
12 == 1.1  What is LA66 LoRaWAN Module ==
13
14
15 (((
16 (((
17 [[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 )))
19
20 (((
21
22 )))
23
24 (((
25 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
26 )))
27 )))
28
29 (((
30 (((
31 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
32 )))
33 )))
34
35 (((
36 (((
37 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
38 )))
39
40 (((
41 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
42 )))
43 )))
44
45 (((
46 (((
47 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
48 )))
49 )))
50
51
52
53 == 1.2  Features ==
54
55 * Support LoRaWAN v1.0.4 protocol
56 * Support peer-to-peer protocol
57 * TCXO crystal to ensure RF performance on low temperature
58 * SMD Antenna pad and i-pex antenna connector
59 * Available in different frequency LoRaWAN frequency bands.
60 * World-wide unique OTAA keys.
61 * AT Command via UART-TTL interface
62 * Firmware upgradable via UART interface
63 * Ultra-long RF range
64
65 == 1.3  Specification ==
66
67 * CPU: 32-bit 48 MHz
68 * Flash: 256KB
69 * RAM: 64KB
70 * Input Power Range: 1.8v ~~ 3.7v
71 * Power Consumption: < 4uA.
72 * Frequency Range: 150 MHz ~~ 960 MHz
73 * Maximum Power +22 dBm constant RF output
74 * High sensitivity: -148 dBm
75 * Temperature:
76 ** Storage: -55 ~~ +125℃
77 ** Operating: -40 ~~ +85℃
78 * Humidity:
79 ** Storage: 5 ~~ 95% (Non-Condensing)
80 ** Operating: 10 ~~ 95% (Non-Condensing)
81 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
82 * LoRa Rx current: <9 mA
83 * I/O Voltage: 3.3v
84
85 == 1.4  AT Command ==
86
87
88 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
89
90
91
92 == 1.5  Dimension ==
93
94 [[image:image-20220718094750-3.png]]
95
96
97
98 == 1.6  Pin Mapping ==
99
100 [[image:image-20220720111850-1.png]]
101
102
103
104 == 1.7  Land Pattern ==
105
106 [[image:image-20220517072821-2.png]]
107
108
109
110 = 2.  LA66 LoRaWAN Shield =
111
112
113 == 2.1  Overview ==
114
115
116 (((
117 [[image:image-20220715000826-2.png||height="145" width="220"]]
118 )))
119
120 (((
121
122 )))
123
124 (((
125 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
126 )))
127
128 (((
129 (((
130 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
131 )))
132 )))
133
134 (((
135 (((
136 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
137 )))
138 )))
139
140 (((
141 (((
142 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
143 )))
144 )))
145
146 (((
147 (((
148 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
149 )))
150 )))
151
152
153
154 == 2.2  Features ==
155
156 * Arduino Shield base on LA66 LoRaWAN module
157 * Support LoRaWAN v1.0.4 protocol
158 * Support peer-to-peer protocol
159 * TCXO crystal to ensure RF performance on low temperature
160 * SMA connector
161 * Available in different frequency LoRaWAN frequency bands.
162 * World-wide unique OTAA keys.
163 * AT Command via UART-TTL interface
164 * Firmware upgradable via UART interface
165 * Ultra-long RF range
166
167 == 2.3  Specification ==
168
169 * CPU: 32-bit 48 MHz
170 * Flash: 256KB
171 * RAM: 64KB
172 * Input Power Range: 1.8v ~~ 3.7v
173 * Power Consumption: < 4uA.
174 * Frequency Range: 150 MHz ~~ 960 MHz
175 * Maximum Power +22 dBm constant RF output
176 * High sensitivity: -148 dBm
177 * Temperature:
178 ** Storage: -55 ~~ +125℃
179 ** Operating: -40 ~~ +85℃
180 * Humidity:
181 ** Storage: 5 ~~ 95% (Non-Condensing)
182 ** Operating: 10 ~~ 95% (Non-Condensing)
183 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
184 * LoRa Rx current: <9 mA
185 * I/O Voltage: 3.3v
186
187 == 2.4  LED ==
188
189
190 ~1. The LED lights up red when there is an upstream data packet
191 2. When the network is successfully connected, the green light will be on for 5 seconds
192 3. Purple light on when receiving downlink data packets
193
194
195
196 == 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
197
198
199 **Show connection diagram:**
200
201
202 [[image:image-20220723170210-2.png||height="908" width="681"]]
203
204
205
206 (% style="color:blue" %)**1.  open Arduino IDE**
207
208
209 [[image:image-20220723170545-4.png]]
210
211
212
213 (% style="color:blue" %)**2.  Open project**
214
215
216 LA66-LoRaWAN-shield-AT-command-via-Arduino-UNO source code link: [[https:~~/~~/www.dropbox.com/sh/cx0pspkwu62pr97/AAAbKh2ioPdZfSDtdDpooYqha?dl=0>>https://www.dropbox.com/sh/cx0pspkwu62pr97/AAAbKh2ioPdZfSDtdDpooYqha?dl=0]]
217
218
219
220 (% style="color:blue" %)**3.  Click the button marked 1 in the figure to compile, and after the compilation is complete, click the button marked 2 in the figure to upload**
221
222
223
224 (% style="color:blue" %)**4.  After the upload is successful, open the serial port monitoring and send the AT command**
225
226
227 [[image:image-20220723172235-7.png||height="480" width="1027"]]
228
229
230
231 == 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
232
233
234 (% style="color:blue" %)**1.  Open project**
235
236
237 Join-TTN-network source code link: [[https:~~/~~/www.dropbox.com/sh/0sjyncafa0gjv00/AACC2m1orov-QHRkvH8-ddCka?dl=0>>https://www.dropbox.com/sh/0sjyncafa0gjv00/AACC2m1orov-QHRkvH8-ddCka?dl=0]]
238
239
240 [[image:image-20220723172502-8.png]]
241
242
243
244 (% style="color:blue" %)**2.  Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets**
245
246
247 [[image:image-20220723172938-9.png||height="652" width="1050"]]
248
249
250
251 == 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in Node-RED. ==
252
253
254 (% style="color:blue" %)**1.  Open project**
255
256
257 Log-Temperature-Sensor-and-send-data-to-TTN source code link: [[https:~~/~~/www.dropbox.com/sh/0aagmrpec1lxmva/AABMXWVMSHG9dK1_Zv_7xOmCa?dl=0>>https://www.dropbox.com/sh/0aagmrpec1lxmva/AABMXWVMSHG9dK1_Zv_7xOmCa?dl=0]]
258
259
260 [[image:image-20220723173341-10.png||height="581" width="1014"]]
261
262
263
264 (% style="color:blue" %)**2.  Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets**
265
266
267 [[image:image-20220723173950-11.png||height="665" width="1012"]]
268
269
270
271 (% style="color:blue" %)**3.  Integration into Node-red via TTNV3**
272
273 For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
274
275 [[image:image-20220723175700-12.png||height="602" width="995"]]
276
277
278
279 == 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
280
281
282 === 2.8.1  Items needed for update ===
283
284
285 1. LA66 LoRaWAN Shield
286 1. Arduino
287 1. USB TO TTL Adapter
288
289 [[image:image-20220602100052-2.png||height="385" width="600"]]
290
291
292 === 2.8.2  Connection ===
293
294
295 [[image:image-20220602101311-3.png||height="276" width="600"]]
296
297
298 (((
299 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
300 )))
301
302 (((
303 (% style="background-color:yellow" %)**GND  <-> GND
304 TXD  <->  TXD
305 RXD  <->  RXD**
306 )))
307
308
309 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
310
311 Connect USB TTL Adapter to PC after connecting the wires
312
313
314 [[image:image-20220602102240-4.png||height="304" width="600"]]
315
316
317 === 2.8.3  Upgrade steps ===
318
319
320 ==== (% style="color:blue" %)1.  Switch SW1 to put in ISP position(%%) ====
321
322
323 [[image:image-20220602102824-5.png||height="306" width="600"]]
324
325
326
327 ==== (% style="color:blue" %)2.  Press the RST switch once(%%) ====
328
329
330 [[image:image-20220602104701-12.png||height="285" width="600"]]
331
332
333
334 ==== (% style="color:blue" %)3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade(%%) ====
335
336
337 (((
338 (% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
339 )))
340
341
342 [[image:image-20220602103227-6.png]]
343
344
345 [[image:image-20220602103357-7.png]]
346
347
348
349 (% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
350 (% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
351
352
353 [[image:image-20220602103844-8.png]]
354
355
356
357 (% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
358 (% style="color:blue" %)**3. Select the bin file to burn**
359
360
361 [[image:image-20220602104144-9.png]]
362
363
364 [[image:image-20220602104251-10.png]]
365
366
367 [[image:image-20220602104402-11.png]]
368
369
370
371 (% class="wikigeneratedid" id="HClicktostartthedownload" %)
372 (% style="color:blue" %)**4. Click to start the download**
373
374 [[image:image-20220602104923-13.png]]
375
376
377
378 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
379 (% style="color:blue" %)**5. Check update process**
380
381
382 [[image:image-20220602104948-14.png]]
383
384
385
386 (% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
387 (% style="color:blue" %)**The following picture shows that the burning is successful**
388
389 [[image:image-20220602105251-15.png]]
390
391
392
393 = 3.  LA66 USB LoRaWAN Adapter =
394
395
396 == 3.1  Overview ==
397
398
399 [[image:image-20220715001142-3.png||height="145" width="220"]]
400
401
402 (((
403 (% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
404 )))
405
406 (((
407 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
408 )))
409
410 (((
411 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
412 )))
413
414 (((
415 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
416 )))
417
418 (((
419 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
420 )))
421
422
423
424 == 3.2  Features ==
425
426 * LoRaWAN USB adapter base on LA66 LoRaWAN module
427 * Ultra-long RF range
428 * Support LoRaWAN v1.0.4 protocol
429 * Support peer-to-peer protocol
430 * TCXO crystal to ensure RF performance on low temperature
431 * Spring RF antenna
432 * Available in different frequency LoRaWAN frequency bands.
433 * World-wide unique OTAA keys.
434 * AT Command via UART-TTL interface
435 * Firmware upgradable via UART interface
436 * Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
437
438
439
440
441 == 3.3  Specification ==
442
443 * CPU: 32-bit 48 MHz
444 * Flash: 256KB
445 * RAM: 64KB
446 * Input Power Range: 5v
447 * Frequency Range: 150 MHz ~~ 960 MHz
448 * Maximum Power +22 dBm constant RF output
449 * High sensitivity: -148 dBm
450 * Temperature:
451 ** Storage: -55 ~~ +125℃
452 ** Operating: -40 ~~ +85℃
453 * Humidity:
454 ** Storage: 5 ~~ 95% (Non-Condensing)
455 ** Operating: 10 ~~ 95% (Non-Condensing)
456 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
457 * LoRa Rx current: <9 mA
458
459
460
461
462 == 3.4  Pin Mapping & LED ==
463
464
465
466 == 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
467
468
469 (((
470 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
471 )))
472
473
474 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
475
476
477 [[image:image-20220723100027-1.png]]
478
479
480 Open the serial port tool
481
482 [[image:image-20220602161617-8.png]]
483
484 [[image:image-20220602161718-9.png||height="457" width="800"]]
485
486
487
488 (% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
489
490 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
491
492
493 [[image:image-20220602161935-10.png||height="498" width="800"]]
494
495
496
497 (% style="color:blue" %)**3. See Uplink Command**
498
499 Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
500
501 example: AT+SENDB=01,02,8,05820802581ea0a5
502
503 [[image:image-20220602162157-11.png||height="497" width="800"]]
504
505
506
507 (% style="color:blue" %)**4. Check to see if TTN received the message**
508
509 [[image:image-20220602162331-12.png||height="420" width="800"]]
510
511
512
513 == 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
514
515
516 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
517
518 (**Raspberry Pi example: **[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py]])
519
520 (% style="color:red" %)**Preconditions:**
521
522 (% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
523
524 (% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
525
526
527
528 (% style="color:blue" %)**Steps for usage:**
529
530 (% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
531
532 (% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
533
534 [[image:image-20220602115852-3.png||height="450" width="1187"]]
535
536
537
538 == 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
539
540
541 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
542
543
544 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
545
546 [[image:image-20220723100439-2.png]]
547
548
549
550 (% style="color:blue" %)**2. Install Minicom in RPi.**
551
552 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
553
554 (% style="background-color:yellow" %)**apt update**
555
556 (% style="background-color:yellow" %)**apt install minicom**
557
558
559 Use minicom to connect to the RPI's terminal
560
561 [[image:image-20220602153146-3.png||height="439" width="500"]]
562
563
564
565 (% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
566
567 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
568
569
570 [[image:image-20220602154928-5.png||height="436" width="500"]]
571
572
573
574 (% style="color:blue" %)**4. Send Uplink message**
575
576 Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
577
578 example: AT+SENDB=01,02,8,05820802581ea0a5
579
580
581 [[image:image-20220602160339-6.png||height="517" width="600"]]
582
583
584
585 Check to see if TTN received the message
586
587 [[image:image-20220602160627-7.png||height="369" width="800"]]
588
589
590
591 == 3.8  Example: Use of LA66 USB LoRaWAN Adapter and APP sample process and DRAGINO-LA66-APP. ==
592
593
594 === 3.8.1  DRAGINO-LA66-APP ===
595
596
597 [[image:image-20220723102027-3.png]]
598
599
600
601 ==== (% style="color:blue" %)**Overview:**(%%) ====
602
603
604 (((
605 DRAGINO-LA66-APP is a mobile APP for LA66 USB LoRaWAN Adapter and APP sample process. DRAGINO-LA66-APP can obtain the positioning information of the mobile phone and send it to the LoRaWAN platform through the LA66 USB LoRaWAN Adapter.
606 )))
607
608 (((
609 View the communication signal strength between the node and the gateway through the RSSI value(DRAGINO-LA66-APP currently only supports Android system)
610 )))
611
612
613
614 ==== (% style="color:blue" %)**Conditions of Use:**(%%) ====
615
616
617 Requires a type-c to USB adapter
618
619 [[image:image-20220723104754-4.png]]
620
621
622
623 ==== (% style="color:blue" %)**Use of APP:**(%%) ====
624
625
626 Function and page introduction
627
628 [[image:image-20220723113448-7.png||height="1481" width="670"]]
629
630
631 1.Display LA66 USB LoRaWAN Module connection status
632
633 2.Check and reconnect
634
635 3.Turn send timestamps on or off
636
637 4.Display LoRaWan connection status
638
639 5.Check LoRaWan connection status
640
641 6.The RSSI value of the node when the ACK is received
642
643 7.Node's Signal Strength Icon
644
645 8.Set the packet sending interval of the node in seconds
646
647 9.AT command input box
648
649 10.Send AT command button
650
651 11.Node log box
652
653 12.clear log button
654
655 13.exit button
656
657
658 LA66 USB LoRaWAN Module not connected
659
660 [[image:image-20220723110520-5.png||height="903" width="677"]]
661
662
663
664 Connect LA66 USB LoRaWAN Module
665
666 [[image:image-20220723110626-6.png||height="906" width="680"]]
667
668
669
670 === 3.8.2  Use DRAGINO-LA66-APP to obtain positioning information and send it to TTNV3 through LA66 USB LoRaWAN Adapter and integrate it into Node-RED ===
671
672
673 (% style="color:blue" %)**1.  Register LA66 USB LoRaWAN Module to TTNV3**
674
675 [[image:image-20220723134549-8.png]]
676
677
678
679 (% style="color:blue" %)**2.  Open Node-RED,And import the JSON file to generate the flow**
680
681 Sample JSON file please go to this link to download:放置JSON文件的链接
682
683 For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
684
685 The following is the positioning effect map
686
687 [[image:image-20220723144339-1.png]]
688
689
690
691 == 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
692
693
694 The LA66 USB LoRaWAN Adapter is the same as the LA66 LoRaWAN Shield update method
695
696 Just use the yellow jumper cap to short the BOOT corner and the RX corner, and then press the RESET button (without the jumper cap, you can directly short the BOOT corner and the RX corner with a wire to achieve the same effect)
697
698 [[image:image-20220723150132-2.png]]
699
700
701
702 = 4.  Order Info =
703
704
705 **Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
706
707
708 (% style="color:blue" %)**XXX**(%%): The default frequency band
709
710 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
711 * (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
712 * (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
713 * (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
714 * (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
715 * (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
716 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
717 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
718 * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
719
720
721
722 = 5.  Reference =
723
724
725 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0