Show last authors
1
2
3 **Table of Contents:**
4
5 {{toc/}}
6
7
8
9 = 1.  LA66 LoRaWAN Module =
10
11
12 == 1.1  What is LA66 LoRaWAN Module ==
13
14
15 (((
16 (((
17 [[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 )))
19
20 (((
21
22 )))
23
24 (((
25 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
26 )))
27 )))
28
29 (((
30 (((
31 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
32 )))
33 )))
34
35 (((
36 (((
37 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
38 )))
39
40 (((
41 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
42 )))
43 )))
44
45 (((
46 (((
47 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
48 )))
49 )))
50
51
52
53 == 1.2  Features ==
54
55 * Support LoRaWAN v1.0.4 protocol
56 * Support peer-to-peer protocol
57 * TCXO crystal to ensure RF performance on low temperature
58 * SMD Antenna pad and i-pex antenna connector
59 * Available in different frequency LoRaWAN frequency bands.
60 * World-wide unique OTAA keys.
61 * AT Command via UART-TTL interface
62 * Firmware upgradable via UART interface
63 * Ultra-long RF range
64
65
66 == 1.3  Specification ==
67
68 * CPU: 32-bit 48 MHz
69 * Flash: 256KB
70 * RAM: 64KB
71 * Input Power Range: 1.8v ~~ 3.7v
72 * Power Consumption: < 4uA.
73 * Frequency Range: 150 MHz ~~ 960 MHz
74 * Maximum Power +22 dBm constant RF output
75 * High sensitivity: -148 dBm
76 * Temperature:
77 ** Storage: -55 ~~ +125℃
78 ** Operating: -40 ~~ +85℃
79 * Humidity:
80 ** Storage: 5 ~~ 95% (Non-Condensing)
81 ** Operating: 10 ~~ 95% (Non-Condensing)
82 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
83 * LoRa Rx current: <9 mA
84 * I/O Voltage: 3.3v
85
86
87 == 1.4  AT Command ==
88
89
90 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
91
92
93
94 == 1.5  Dimension ==
95
96 [[image:image-20220718094750-3.png]]
97
98
99
100
101 == 1.6  Pin Mapping ==
102
103
104 [[image:image-20220719093156-1.png]]
105
106
107
108 == 1.7  Land Pattern ==
109
110 [[image:image-20220517072821-2.png]]
111
112
113
114 = 2.  LA66 LoRaWAN Shield =
115
116
117 == 2.1  Overview ==
118
119
120 (((
121 [[image:image-20220715000826-2.png||height="145" width="220"]]
122 )))
123
124 (((
125
126 )))
127
128 (((
129 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
130 )))
131
132 (((
133 (((
134 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
135 )))
136 )))
137
138 (((
139 (((
140 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
141 )))
142 )))
143
144 (((
145 (((
146 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
147 )))
148 )))
149
150 (((
151 (((
152 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
153 )))
154 )))
155
156
157
158 == 2.2  Features ==
159
160 * Arduino Shield base on LA66 LoRaWAN module
161 * Support LoRaWAN v1.0.4 protocol
162 * Support peer-to-peer protocol
163 * TCXO crystal to ensure RF performance on low temperature
164 * SMA connector
165 * Available in different frequency LoRaWAN frequency bands.
166 * World-wide unique OTAA keys.
167 * AT Command via UART-TTL interface
168 * Firmware upgradable via UART interface
169 * Ultra-long RF range
170
171
172 == 2.3  Specification ==
173
174 * CPU: 32-bit 48 MHz
175 * Flash: 256KB
176 * RAM: 64KB
177 * Input Power Range: 1.8v ~~ 3.7v
178 * Power Consumption: < 4uA.
179 * Frequency Range: 150 MHz ~~ 960 MHz
180 * Maximum Power +22 dBm constant RF output
181 * High sensitivity: -148 dBm
182 * Temperature:
183 ** Storage: -55 ~~ +125℃
184 ** Operating: -40 ~~ +85℃
185 * Humidity:
186 ** Storage: 5 ~~ 95% (Non-Condensing)
187 ** Operating: 10 ~~ 95% (Non-Condensing)
188 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
189 * LoRa Rx current: <9 mA
190 * I/O Voltage: 3.3v
191
192
193 == 2.4  Pin Mapping & LED ==
194
195
196
197 == 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
198
199
200
201 == 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
202
203
204
205 == 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
206
207
208
209 == 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
210
211
212 === 2.8.1  Items needed for update ===
213
214 1. LA66 LoRaWAN Shield
215 1. Arduino
216 1. USB TO TTL Adapter
217
218
219 [[image:image-20220602100052-2.png||height="385" width="600"]]
220
221
222 === 2.8.2  Connection ===
223
224
225 [[image:image-20220602101311-3.png||height="276" width="600"]]
226
227
228 (((
229 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
230 )))
231
232 (((
233 (% style="background-color:yellow" %)**GND  <-> GND
234 TXD  <->  TXD
235 RXD  <->  RXD**
236 )))
237
238
239 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
240
241 Connect USB TTL Adapter to PC after connecting the wires
242
243
244 [[image:image-20220602102240-4.png||height="304" width="600"]]
245
246
247 === 2.8.3  Upgrade steps ===
248
249
250 ==== 1.  Switch SW1 to put in ISP position ====
251
252
253 [[image:image-20220602102824-5.png||height="306" width="600"]]
254
255
256
257 ==== 2.  Press the RST switch once ====
258
259
260 [[image:image-20220602104701-12.png||height="285" width="600"]]
261
262
263
264 ==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
265
266
267 (((
268 (% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
269 )))
270
271
272 [[image:image-20220602103227-6.png]]
273
274
275 [[image:image-20220602103357-7.png]]
276
277
278
279 (% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
280 (% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
281
282
283 [[image:image-20220602103844-8.png]]
284
285
286
287 (% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
288 (% style="color:blue" %)**3. Select the bin file to burn**
289
290
291 [[image:image-20220602104144-9.png]]
292
293
294 [[image:image-20220602104251-10.png]]
295
296
297 [[image:image-20220602104402-11.png]]
298
299
300
301 (% class="wikigeneratedid" id="HClicktostartthedownload" %)
302 (% style="color:blue" %)**4. Click to start the download**
303
304 [[image:image-20220602104923-13.png]]
305
306
307
308 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
309 (% style="color:blue" %)**5. Check update process**
310
311
312 [[image:image-20220602104948-14.png]]
313
314
315
316 (% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
317 (% style="color:blue" %)**The following picture shows that the burning is successful**
318
319 [[image:image-20220602105251-15.png]]
320
321
322
323 = 3.  LA66 USB LoRaWAN Adapter =
324
325
326 == 3.1  Overview ==
327
328
329 [[image:image-20220715001142-3.png||height="145" width="220"]]
330
331
332 (% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
333
334 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
335
336 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
337
338 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
339
340 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
341
342
343
344 == 3.2  Features ==
345
346 * LoRaWAN USB adapter base on LA66 LoRaWAN module
347 * Ultra-long RF range
348 * Support LoRaWAN v1.0.4 protocol
349 * Support peer-to-peer protocol
350 * TCXO crystal to ensure RF performance on low temperature
351 * Spring RF antenna
352 * Available in different frequency LoRaWAN frequency bands.
353 * World-wide unique OTAA keys.
354 * AT Command via UART-TTL interface
355 * Firmware upgradable via UART interface
356 * Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
357
358
359 == 3.3  Specification ==
360
361 * CPU: 32-bit 48 MHz
362 * Flash: 256KB
363 * RAM: 64KB
364 * Input Power Range: 5v
365 * Frequency Range: 150 MHz ~~ 960 MHz
366 * Maximum Power +22 dBm constant RF output
367 * High sensitivity: -148 dBm
368 * Temperature:
369 ** Storage: -55 ~~ +125℃
370 ** Operating: -40 ~~ +85℃
371 * Humidity:
372 ** Storage: 5 ~~ 95% (Non-Condensing)
373 ** Operating: 10 ~~ 95% (Non-Condensing)
374 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
375 * LoRa Rx current: <9 mA
376
377
378 == 3.4  Pin Mapping & LED ==
379
380
381
382 == 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
383
384
385 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
386
387
388 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
389
390
391 [[image:image-20220602171217-1.png||height="538" width="800"]]
392
393
394 Open the serial port tool
395
396 [[image:image-20220602161617-8.png]]
397
398 [[image:image-20220602161718-9.png||height="457" width="800"]]
399
400
401
402 (% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
403
404 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
405
406
407 [[image:image-20220602161935-10.png||height="498" width="800"]]
408
409
410
411 (% style="color:blue" %)**3. See Uplink Command**
412
413 Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
414
415 example: AT+SENDB=01,02,8,05820802581ea0a5
416
417 [[image:image-20220602162157-11.png||height="497" width="800"]]
418
419
420
421 (% style="color:blue" %)**4. Check to see if TTN received the message**
422
423 [[image:image-20220602162331-12.png||height="420" width="800"]]
424
425
426
427 == 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
428
429
430 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
431
432
433 (% style="color:red" %)**Preconditions:**
434
435 (% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
436
437 (% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
438
439
440
441 (% style="color:blue" %)**Steps for usage:**
442
443 (% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
444
445 (% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
446
447 [[image:image-20220602115852-3.png||height="450" width="1187"]]
448
449
450
451 == 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
452
453
454 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
455
456
457 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
458
459 [[image:image-20220602171233-2.png||height="538" width="800"]]
460
461
462
463 (% style="color:blue" %)**2. Install Minicom in RPi.**
464
465 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
466
467 (% style="background-color:yellow" %)**apt update**
468
469 (% style="background-color:yellow" %)**apt install minicom**
470
471
472 Use minicom to connect to the RPI's terminal
473
474 [[image:image-20220602153146-3.png||height="439" width="500"]]
475
476
477
478 (% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
479
480 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
481
482
483 [[image:image-20220602154928-5.png||height="436" width="500"]]
484
485
486
487 (% style="color:blue" %)**4. Send Uplink message**
488
489 Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
490
491 example: AT+SENDB=01,02,8,05820802581ea0a5
492
493
494 [[image:image-20220602160339-6.png||height="517" width="600"]]
495
496
497
498 Check to see if TTN received the message
499
500 [[image:image-20220602160627-7.png||height="369" width="800"]]
501
502
503
504 == 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
505
506
507
508 == 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
509
510
511
512
513 = 4.  Order Info =
514
515
516 **Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
517
518
519 (% style="color:blue" %)**XXX**(%%): The default frequency band
520
521 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
522 * (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
523 * (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
524 * (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
525 * (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
526 * (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
527 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
528 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
529 * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
530
531
532 = 5.  Reference =
533
534 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0