<
From version < 98.3 >
edited by Xiaoling
on 2022/07/18 09:56
To version < 65.1 >
edited by Edwin Chen
on 2022/07/02 23:30
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,498 +1,264 @@
1 -
2 -
3 -**Table of Contents:**
4 -
1 +{{box cssClass="floatinginfobox" title="**Contents**"}}
5 5  {{toc/}}
3 +{{/box}}
6 6  
5 += LA66 LoRaWAN Module =
7 7  
7 +== What is LA66 LoRaWAN Module ==
8 8  
9 -= 1.  LA66 LoRaWAN Module =
10 -
11 -
12 -== 1.1  What is LA66 LoRaWAN Module ==
13 -
14 -
15 -(((
16 -[[image:image-20220715000242-1.png||height="110" width="132"]]
17 -
18 18  (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
19 -)))
20 20  
21 -(((
22 22  (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
23 -)))
24 24  
25 -(((
26 26  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
27 -)))
28 28  
29 -(((
30 30  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
31 -)))
32 32  
33 -(((
34 34  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
35 -)))
36 36  
19 +== Features ==
37 37  
38 -== 1.2  Features ==
39 39  
40 -* Support LoRaWAN v1.0.4 protocol
41 -* Support peer-to-peer protocol
42 -* TCXO crystal to ensure RF performance on low temperature
43 -* SMD Antenna pad and i-pex antenna connector
44 -* Available in different frequency LoRaWAN frequency bands.
45 -* World-wide unique OTAA keys.
46 -* AT Command via UART-TTL interface
47 -* Firmware upgradable via UART interface
48 -* Ultra-long RF range
22 +== Specification ==
49 49  
24 +[[image:image-20220517072526-1.png]]
50 50  
26 +Input Power Range: 1.8v ~~ 3.7v
51 51  
52 -== 1.3  Specification ==
28 +Power Consumption: < 4uA.
53 53  
54 -* CPU: 32-bit 48 MHz
55 -* Flash: 256KB
56 -* RAM: 64KB
57 -* Input Power Range: 1.8v ~~ 3.7v
58 -* Power Consumption: < 4uA.
59 -* Frequency Range: 150 MHz ~~ 960 MHz
60 -* Maximum Power +22 dBm constant RF output
61 -* High sensitivity: -148 dBm
62 -* Temperature:
63 -** Storage: -55 ~~ +125℃
64 -** Operating: -40 ~~ +85℃
65 -* Humidity:
66 -** Storage: 5 ~~ 95% (Non-Condensing)
67 -** Operating: 10 ~~ 95% (Non-Condensing)
68 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
69 -* LoRa Rx current: <9 mA
70 -* I/O Voltage: 3.3v
30 +Frequency Range: 150 MHz ~~ 960 MHz
71 71  
32 +Maximum Power +22 dBm constant RF output
72 72  
34 +High sensitivity: -148 dBm
73 73  
36 +Temperature:
74 74  
75 -== 1.4  AT Command ==
38 +* Storage: -55 ~~ +125℃
39 +* Operating: -40 ~~ +85℃
76 76  
41 +Humidity:
77 77  
78 -AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
43 +* Storage: 5 ~~ 95% (Non-Condensing)
44 +* Operating: 10 ~~ 95% (Non-Condensing)
79 79  
46 +LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
80 80  
81 -== 1.5  Dimension ==
48 +LoRa Rx current: <9 mA
82 82  
83 -[[image:image-20220718094750-3.png]]
50 +I/O Voltage: 3.3v
84 84  
85 85  
53 +== AT Command ==
86 86  
55 +AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
87 87  
88 -== 1.6  Pin Mapping ==
89 89  
58 +== Pin Mapping ==
90 90  
91 91  [[image:image-20220523101537-1.png]]
92 92  
62 +== Land Pattern ==
93 93  
94 -
95 -== 1.7  Land Pattern ==
96 -
97 97  [[image:image-20220517072821-2.png]]
98 98  
99 99  
67 +== Part Number ==
100 100  
101 -= 2.  LA66 LoRaWAN Shield =
69 +Part Number: **LA66-XXX**
102 102  
71 +**XX**: The default frequency band
103 103  
104 -== 2.1  Overview ==
73 +* **AS923**: LoRaWAN AS923 band
74 +* **AU915**: LoRaWAN AU915 band
75 +* **EU433**: LoRaWAN EU433 band
76 +* **EU868**: LoRaWAN EU868 band
77 +* **KR920**: LoRaWAN KR920 band
78 +* **US915**: LoRaWAN US915 band
79 +* **IN865**: LoRaWAN IN865 band
80 +* **CN470**: LoRaWAN CN470 band
105 105  
82 += LA66 LoRaWAN Shield =
106 106  
107 -[[image:image-20220715000826-2.png||height="386" width="449"]]
84 +LA66 LoRaWAN Shield is the Arduino Breakout PCB to fast test the features of LA66 module and turn Arduino to support LoRaWAN.
108 108  
86 +== Pin Mapping & LED ==
109 109  
110 -LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
88 +== Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
111 111  
112 -(((
113 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
114 -)))
90 +== Example: Join TTN network and send an uplink message, get downlink message. ==
115 115  
116 -(((
117 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
118 -)))
92 +== Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
119 119  
120 -(((
121 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
122 -)))
94 +== Upgrade Firmware of LA66 LoRaWAN Shield ==
123 123  
124 -(((
125 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
126 -)))
96 +=== what needs to be used ===
127 127  
98 +1.LA66 LoRaWAN Shield that needs to be upgraded
128 128  
129 -== 2.2  Features ==
100 +2.Arduino
130 130  
131 -* Arduino Shield base on LA66 LoRaWAN module
132 -* Support LoRaWAN v1.0.4 protocol
133 -* Support peer-to-peer protocol
134 -* TCXO crystal to ensure RF performance on low temperature
135 -* SMA connector
136 -* Available in different frequency LoRaWAN frequency bands.
137 -* World-wide unique OTAA keys.
138 -* AT Command via UART-TTL interface
139 -* Firmware upgradable via UART interface
140 -* Ultra-long RF range
102 +3.USB TO TTL
141 141  
142 -== 2.3  Specification ==
104 +[[image:image-20220602100052-2.png]]
143 143  
144 -* CPU: 32-bit 48 MHz
145 -* Flash: 256KB
146 -* RAM: 64KB
147 -* Input Power Range: 1.8v ~~ 3.7v
148 -* Power Consumption: < 4uA.
149 -* Frequency Range: 150 MHz ~~ 960 MHz
150 -* Maximum Power +22 dBm constant RF output
151 -* High sensitivity: -148 dBm
152 -* Temperature:
153 -** Storage: -55 ~~ +125℃
154 -** Operating: -40 ~~ +85℃
155 -* Humidity:
156 -** Storage: 5 ~~ 95% (Non-Condensing)
157 -** Operating: 10 ~~ 95% (Non-Condensing)
158 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
159 -* LoRa Rx current: <9 mA
160 -* I/O Voltage: 3.3v
106 +=== Wiring Schematic ===
161 161  
162 -== 2.4  Pin Mapping & LED ==
108 +[[image:image-20220602101311-3.png]]
163 163  
110 +LA66 LoRaWAN Shield  >>>>>>>>>>>>USB TTL
164 164  
112 +GND  >>>>>>>>>>>>GND
165 165  
166 -== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
114 +TXD  >>>>>>>>>>>>TXD
167 167  
116 +RXD  >>>>>>>>>>>>RXD
168 168  
118 +JP6 of LA66 LoRaWAN Shield needs to be connected with yellow jumper cap
169 169  
170 -== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
120 +Connect to the PC after connecting the wires
171 171  
122 +[[image:image-20220602102240-4.png]]
172 172  
124 +=== Upgrade steps ===
173 173  
174 -== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
126 +==== Dial the SW1 of the LA66 LoRaWAN Shield to the ISP's location as shown in the figure below ====
175 175  
128 +[[image:image-20220602102824-5.png]]
176 176  
130 +==== Press the RST switch on the LA66 LoRaWAN Shield once ====
177 177  
178 -== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
132 +[[image:image-20220602104701-12.png]]
179 179  
134 +==== Open the upgrade application software ====
180 180  
181 -=== 2.8.1  Items needed for update ===
136 +Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]
182 182  
183 -1. LA66 LoRaWAN Shield
184 -1. Arduino
185 -1. USB TO TTL Adapter
186 -
187 -[[image:image-20220602100052-2.png||height="385" width="600"]]
188 -
189 -
190 -=== 2.8.2  Connection ===
191 -
192 -
193 -[[image:image-20220602101311-3.png||height="276" width="600"]]
194 -
195 -
196 -(((
197 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
198 -)))
199 -
200 -(((
201 -(% style="background-color:yellow" %)**GND  <-> GND
202 -TXD  <->  TXD
203 -RXD  <->  RXD**
204 -)))
205 -
206 -
207 -Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
208 -
209 -Connect USB TTL Adapter to PC after connecting the wires
210 -
211 -
212 -[[image:image-20220602102240-4.png||height="304" width="600"]]
213 -
214 -
215 -=== 2.8.3  Upgrade steps ===
216 -
217 -
218 -==== 1.  Switch SW1 to put in ISP position ====
219 -
220 -
221 -[[image:image-20220602102824-5.png||height="306" width="600"]]
222 -
223 -
224 -
225 -==== 2.  Press the RST switch once ====
226 -
227 -
228 -[[image:image-20220602104701-12.png||height="285" width="600"]]
229 -
230 -
231 -
232 -==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
233 -
234 -
235 -(((
236 -(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
237 -)))
238 -
239 -
240 240  [[image:image-20220602103227-6.png]]
241 241  
242 -
243 243  [[image:image-20220602103357-7.png]]
244 244  
142 +===== Select the COM port corresponding to USB TTL =====
245 245  
246 -
247 -(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
248 -(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
249 -
250 -
251 251  [[image:image-20220602103844-8.png]]
252 252  
146 +===== Select the bin file to burn =====
253 253  
254 -
255 -(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
256 -(% style="color:blue" %)**3. Select the bin file to burn**
257 -
258 -
259 259  [[image:image-20220602104144-9.png]]
260 260  
261 -
262 262  [[image:image-20220602104251-10.png]]
263 263  
264 -
265 265  [[image:image-20220602104402-11.png]]
266 266  
154 +===== Click to start the download =====
267 267  
268 -
269 -(% class="wikigeneratedid" id="HClicktostartthedownload" %)
270 -(% style="color:blue" %)**4. Click to start the download**
271 -
272 272  [[image:image-20220602104923-13.png]]
273 273  
158 +===== The following figure appears to prove that the burning is in progress =====
274 274  
275 -
276 -(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
277 -(% style="color:blue" %)**5. Check update process**
278 -
279 -
280 280  [[image:image-20220602104948-14.png]]
281 281  
162 +===== The following picture appears to prove that the burning is successful =====
282 282  
283 -
284 -(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
285 -(% style="color:blue" %)**The following picture shows that the burning is successful**
286 -
287 287  [[image:image-20220602105251-15.png]]
288 288  
166 += LA66 USB LoRaWAN Adapter =
289 289  
168 +LA66 USB LoRaWAN Adapter is the USB Adapter for LA66, it combines a USB TTL Chip and LA66 module which can easy to test the LoRaWAN feature by using PC or embedded device which has USB Interface.
290 290  
291 -= 3.  LA66 USB LoRaWAN Adapter =
170 +Before use, please make sure that the computer has installed the CP2102 driver
292 292  
172 +== Pin Mapping & LED ==
293 293  
294 -== 3.1  Overview ==
174 +== Example Send & Get Messages via LoRaWAN in PC ==
295 295  
296 -[[image:image-20220715001142-3.png||height="145" width="220"]]
176 +Connect the LA66 LoRa Shield to the PC
297 297  
298 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
178 +[[image:image-20220602171217-1.png||height="615" width="915"]]
299 299  
300 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
301 -
302 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
303 -
304 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
305 -
306 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
307 -
308 -
309 -== 3.2  Features ==
310 -
311 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
312 -* Ultra-long RF range
313 -* Support LoRaWAN v1.0.4 protocol
314 -* Support peer-to-peer protocol
315 -* TCXO crystal to ensure RF performance on low temperature
316 -* Spring RF antenna
317 -* Available in different frequency LoRaWAN frequency bands.
318 -* World-wide unique OTAA keys.
319 -* AT Command via UART-TTL interface
320 -* Firmware upgradable via UART interface
321 -* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
322 -
323 -== 3.3  Specification ==
324 -
325 -* CPU: 32-bit 48 MHz
326 -* Flash: 256KB
327 -* RAM: 64KB
328 -* Input Power Range: 5v
329 -* Frequency Range: 150 MHz ~~ 960 MHz
330 -* Maximum Power +22 dBm constant RF output
331 -* High sensitivity: -148 dBm
332 -* Temperature:
333 -** Storage: -55 ~~ +125℃
334 -** Operating: -40 ~~ +85℃
335 -* Humidity:
336 -** Storage: 5 ~~ 95% (Non-Condensing)
337 -** Operating: 10 ~~ 95% (Non-Condensing)
338 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
339 -* LoRa Rx current: <9 mA
340 -
341 -== 3.4  Pin Mapping & LED ==
342 -
343 -
344 -
345 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
346 -
347 -
348 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
349 -
350 -
351 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
352 -
353 -
354 -[[image:image-20220602171217-1.png||height="538" width="800"]]
355 -
356 -
357 357  Open the serial port tool
358 358  
359 359  [[image:image-20220602161617-8.png]]
360 360  
361 -[[image:image-20220602161718-9.png||height="457" width="800"]]
184 +[[image:image-20220602161718-9.png||height="529" width="927"]]
362 362  
186 +Press the reset switch RST on the LA66 LoRa Shield.
363 363  
188 +The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
364 364  
365 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
190 +[[image:image-20220602161935-10.png]]
366 366  
367 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
192 +send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
368 368  
369 -
370 -[[image:image-20220602161935-10.png||height="498" width="800"]]
371 -
372 -
373 -
374 -(% style="color:blue" %)**3. See Uplink Command**
375 -
376 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
377 -
378 378  example: AT+SENDB=01,02,8,05820802581ea0a5
379 379  
380 -[[image:image-20220602162157-11.png||height="497" width="800"]]
196 +[[image:image-20220602162157-11.png]]
381 381  
198 +Check to see if TTN received the message
382 382  
200 +[[image:image-20220602162331-12.png||height="547" width="1044"]]
383 383  
384 -(% style="color:blue" %)**4. Check to see if TTN received the message**
202 +== Example Send & Get Messages via LoRaWAN in RPi ==
385 385  
386 -[[image:image-20220602162331-12.png||height="420" width="800"]]
204 +Connect the LA66 LoRa Shield to the RPI
387 387  
206 +[[image:image-20220602171233-2.png||height="592" width="881"]]
388 388  
208 +Log in to the RPI's terminal and connect to the serial port
389 389  
390 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
210 +[[image:image-20220602153146-3.png]]
391 391  
212 +Press the reset switch RST on the LA66 LoRa Shield.
213 +The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
392 392  
393 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
215 +[[image:image-20220602154928-5.png]]
394 394  
217 +send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
395 395  
396 -(% style="color:red" %)**Preconditions:**
397 -
398 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
399 -
400 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
401 -
402 -
403 -
404 -(% style="color:blue" %)**Steps for usage:**
405 -
406 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
407 -
408 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
409 -
410 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
411 -
412 -
413 -
414 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
415 -
416 -
417 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
418 -
419 -
420 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
421 -
422 -[[image:image-20220602171233-2.png||height="538" width="800"]]
423 -
424 -
425 -
426 -(% style="color:blue" %)**2. Install Minicom in RPi.**
427 -
428 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
429 -
430 - (% style="background-color:yellow" %)**apt update**
431 -
432 - (% style="background-color:yellow" %)**apt install minicom**
433 -
434 -
435 -Use minicom to connect to the RPI's terminal
436 -
437 -[[image:image-20220602153146-3.png||height="439" width="500"]]
438 -
439 -
440 -
441 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
442 -
443 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
444 -
445 -
446 -[[image:image-20220602154928-5.png||height="436" width="500"]]
447 -
448 -
449 -
450 -(% style="color:blue" %)**4. Send Uplink message**
451 -
452 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
453 -
454 454  example: AT+SENDB=01,02,8,05820802581ea0a5
455 455  
221 +[[image:image-20220602160339-6.png]]
456 456  
457 -[[image:image-20220602160339-6.png||height="517" width="600"]]
223 +Check to see if TTN received the message
458 458  
225 +[[image:image-20220602160627-7.png||height="468" width="1013"]]
459 459  
227 +=== Install Minicom ===
460 460  
461 -Check to see if TTN received the message
229 +Enter the following command in the RPI terminal
462 462  
463 -[[image:image-20220602160627-7.png||height="369" width="800"]]
231 +apt update
464 464  
233 +[[image:image-20220602143155-1.png]]
465 465  
235 +apt install minicom
466 466  
467 -== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
237 +[[image:image-20220602143744-2.png]]
468 468  
239 +=== Send PC's CPU/RAM usage to TTN via script. ===
469 469  
241 +==== Take python as an example: ====
470 470  
471 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
243 +===== Preconditions: =====
472 472  
245 +1.LA66 USB LoRaWAN Adapter works fine
473 473  
247 +2.LA66 USB LoRaWAN Adapter  is registered with TTN
474 474  
249 +===== Steps for usage =====
475 475  
476 -= 4.  Order Info =
251 +1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
477 477  
253 +2.Run the script and see the TTN
478 478  
479 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
255 +[[image:image-20220602115852-3.png]]
480 480  
481 481  
482 -(% style="color:blue" %)**XXX**(%%): The default frequency band
483 483  
484 -* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
485 -* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
486 -* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
487 -* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
488 -* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
489 -* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
490 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
491 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
492 -* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
259 +== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
493 493  
494 -= 5.  Reference =
495 495  
496 -* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
262 +== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
497 497  
498 498  
image-20220715000242-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -172.4 KB
Content
image-20220715000826-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -820.7 KB
Content
image-20220715001142-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -508.1 KB
Content
image-20220718094030-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -193.3 KB
Content
image-20220718094138-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -100.3 KB
Content
image-20220718094750-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -97.9 KB
Content
image-20220718094950-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -97.7 KB
Content
image-20220718095457-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0