<
From version < 98.2 >
edited by Xiaoling
on 2022/07/18 09:56
To version < 63.1 >
edited by Herong Lu
on 2022/06/02 17:23
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Lu
Content
... ... @@ -1,496 +1,259 @@
1 -
2 -
3 -**Table of Contents:**
4 -
1 +{{box cssClass="floatinginfobox" title="**Contents**"}}
5 5  {{toc/}}
3 +{{/box}}
6 6  
5 += LA66 LoRaWAN Module =
7 7  
7 +== What is LA66 LoRaWAN Module ==
8 8  
9 -= 1.  LA66 LoRaWAN Module =
9 +**Dragino LA66** is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRa and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
10 10  
11 +**LA66 **is a ready-to-use module which includes the LoRaWAN v1.0.4 protocol. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
11 11  
12 -== 1.1  What is LA66 LoRaWAN Module ==
13 +**Each LA66 **module includes a world unique OTAA key for LoRaWAN registration.
13 13  
14 14  
15 -(((
16 -[[image:image-20220715000242-1.png||height="110" width="132"]]
17 17  
18 -(% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
19 -)))
17 +== Specification ==
20 20  
21 -(((
22 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
23 -)))
19 +[[image:image-20220517072526-1.png]]
24 24  
25 -(((
26 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
27 -)))
21 +Input Power Range: 1.8v ~~ 3.7v
28 28  
29 -(((
30 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
31 -)))
23 +Power Consumption: < 4uA.
32 32  
33 -(((
34 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
35 -)))
25 +Frequency Range: 150 MHz ~~ 960 MHz
36 36  
27 +Maximum Power +22 dBm constant RF output
37 37  
38 -== 1.2  Features ==
29 +High sensitivity: -148 dBm
39 39  
40 -* Support LoRaWAN v1.0.4 protocol
41 -* Support peer-to-peer protocol
42 -* TCXO crystal to ensure RF performance on low temperature
43 -* SMD Antenna pad and i-pex antenna connector
44 -* Available in different frequency LoRaWAN frequency bands.
45 -* World-wide unique OTAA keys.
46 -* AT Command via UART-TTL interface
47 -* Firmware upgradable via UART interface
48 -* Ultra-long RF range
31 +Temperature:
49 49  
50 -== 1.3  Specification ==
33 +* Storage: -55 ~~ +125℃
34 +* Operating: -40 ~~ +85℃
51 51  
52 -* CPU: 32-bit 48 MHz
53 -* Flash: 256KB
54 -* RAM: 64KB
55 -* Input Power Range: 1.8v ~~ 3.7v
56 -* Power Consumption: < 4uA.
57 -* Frequency Range: 150 MHz ~~ 960 MHz
58 -* Maximum Power +22 dBm constant RF output
59 -* High sensitivity: -148 dBm
60 -* Temperature:
61 -** Storage: -55 ~~ +125℃
62 -** Operating: -40 ~~ +85℃
63 -* Humidity:
64 -** Storage: 5 ~~ 95% (Non-Condensing)
65 -** Operating: 10 ~~ 95% (Non-Condensing)
66 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
67 -* LoRa Rx current: <9 mA
68 -* I/O Voltage: 3.3v
36 +Humidity:
69 69  
38 +* Storage: 5 ~~ 95% (Non-Condensing)
39 +* Operating: 10 ~~ 95% (Non-Condensing)
70 70  
41 +LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
71 71  
43 +LoRa Rx current: <9 mA
72 72  
73 -== 1.4  AT Command ==
45 +I/O Voltage: 3.3v
74 74  
75 75  
48 +== AT Command ==
49 +
76 76  AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
77 77  
78 78  
79 -== 1.5  Dimension ==
53 +== Pin Mapping ==
80 80  
81 -[[image:image-20220718094750-3.png]]
82 -
83 -
84 -
85 -
86 -== 1.6  Pin Mapping ==
87 -
88 -
89 89  [[image:image-20220523101537-1.png]]
90 90  
57 +== Land Pattern ==
91 91  
92 -
93 -== 1.7  Land Pattern ==
94 -
95 95  [[image:image-20220517072821-2.png]]
96 96  
97 97  
62 +== Part Number ==
98 98  
99 -= 2.  LA66 LoRaWAN Shield =
64 +Part Number: **LA66-XXX**
100 100  
66 +**XX**: The default frequency band
101 101  
102 -== 2.1  Overview ==
68 +* **AS923**: LoRaWAN AS923 band
69 +* **AU915**: LoRaWAN AU915 band
70 +* **EU433**: LoRaWAN EU433 band
71 +* **EU868**: LoRaWAN EU868 band
72 +* **KR920**: LoRaWAN KR920 band
73 +* **US915**: LoRaWAN US915 band
74 +* **IN865**: LoRaWAN IN865 band
75 +* **CN470**: LoRaWAN CN470 band
103 103  
77 += LA66 LoRaWAN Shield =
104 104  
105 -[[image:image-20220715000826-2.png||height="386" width="449"]]
79 +LA66 LoRaWAN Shield is the Arduino Breakout PCB to fast test the features of LA66 module and turn Arduino to support LoRaWAN.
106 106  
81 +== Pin Mapping & LED ==
107 107  
108 -LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
83 +== Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
109 109  
110 -(((
111 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
112 -)))
85 +== Example: Join TTN network and send an uplink message, get downlink message. ==
113 113  
114 -(((
115 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
116 -)))
87 +== Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
117 117  
118 -(((
119 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
120 -)))
89 +== Upgrade Firmware of LA66 LoRaWAN Shield ==
121 121  
122 -(((
123 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
124 -)))
91 +=== what needs to be used ===
125 125  
93 +1.LA66 LoRaWAN Shield that needs to be upgraded
126 126  
127 -== 2.2  Features ==
95 +2.Arduino
128 128  
129 -* Arduino Shield base on LA66 LoRaWAN module
130 -* Support LoRaWAN v1.0.4 protocol
131 -* Support peer-to-peer protocol
132 -* TCXO crystal to ensure RF performance on low temperature
133 -* SMA connector
134 -* Available in different frequency LoRaWAN frequency bands.
135 -* World-wide unique OTAA keys.
136 -* AT Command via UART-TTL interface
137 -* Firmware upgradable via UART interface
138 -* Ultra-long RF range
97 +3.USB TO TTL
139 139  
140 -== 2.3  Specification ==
99 +[[image:image-20220602100052-2.png]]
141 141  
142 -* CPU: 32-bit 48 MHz
143 -* Flash: 256KB
144 -* RAM: 64KB
145 -* Input Power Range: 1.8v ~~ 3.7v
146 -* Power Consumption: < 4uA.
147 -* Frequency Range: 150 MHz ~~ 960 MHz
148 -* Maximum Power +22 dBm constant RF output
149 -* High sensitivity: -148 dBm
150 -* Temperature:
151 -** Storage: -55 ~~ +125℃
152 -** Operating: -40 ~~ +85℃
153 -* Humidity:
154 -** Storage: 5 ~~ 95% (Non-Condensing)
155 -** Operating: 10 ~~ 95% (Non-Condensing)
156 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
157 -* LoRa Rx current: <9 mA
158 -* I/O Voltage: 3.3v
101 +=== Wiring Schematic ===
159 159  
160 -== 2.4  Pin Mapping & LED ==
103 +[[image:image-20220602101311-3.png]]
161 161  
105 +LA66 LoRaWAN Shield  >>>>>>>>>>>>USB TTL
162 162  
107 +GND  >>>>>>>>>>>>GND
163 163  
164 -== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
109 +TXD  >>>>>>>>>>>>TXD
165 165  
111 +RXD  >>>>>>>>>>>>RXD
166 166  
113 +JP6 of LA66 LoRaWAN Shield needs to be connected with yellow jumper cap
167 167  
168 -== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
115 +Connect to the PC after connecting the wires
169 169  
117 +[[image:image-20220602102240-4.png]]
170 170  
119 +=== Upgrade steps ===
171 171  
172 -== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
121 +==== Dial the SW1 of the LA66 LoRaWAN Shield to the ISP's location as shown in the figure below ====
173 173  
123 +[[image:image-20220602102824-5.png]]
174 174  
125 +==== Press the RST switch on the LA66 LoRaWAN Shield once ====
175 175  
176 -== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
127 +[[image:image-20220602104701-12.png]]
177 177  
129 +==== Open the upgrade application software ====
178 178  
179 -=== 2.8.1  Items needed for update ===
131 +Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]
180 180  
181 -1. LA66 LoRaWAN Shield
182 -1. Arduino
183 -1. USB TO TTL Adapter
184 -
185 -[[image:image-20220602100052-2.png||height="385" width="600"]]
186 -
187 -
188 -=== 2.8.2  Connection ===
189 -
190 -
191 -[[image:image-20220602101311-3.png||height="276" width="600"]]
192 -
193 -
194 -(((
195 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
196 -)))
197 -
198 -(((
199 -(% style="background-color:yellow" %)**GND  <-> GND
200 -TXD  <->  TXD
201 -RXD  <->  RXD**
202 -)))
203 -
204 -
205 -Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
206 -
207 -Connect USB TTL Adapter to PC after connecting the wires
208 -
209 -
210 -[[image:image-20220602102240-4.png||height="304" width="600"]]
211 -
212 -
213 -=== 2.8.3  Upgrade steps ===
214 -
215 -
216 -==== 1.  Switch SW1 to put in ISP position ====
217 -
218 -
219 -[[image:image-20220602102824-5.png||height="306" width="600"]]
220 -
221 -
222 -
223 -==== 2.  Press the RST switch once ====
224 -
225 -
226 -[[image:image-20220602104701-12.png||height="285" width="600"]]
227 -
228 -
229 -
230 -==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
231 -
232 -
233 -(((
234 -(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
235 -)))
236 -
237 -
238 238  [[image:image-20220602103227-6.png]]
239 239  
240 -
241 241  [[image:image-20220602103357-7.png]]
242 242  
137 +===== Select the COM port corresponding to USB TTL =====
243 243  
244 -
245 -(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
246 -(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
247 -
248 -
249 249  [[image:image-20220602103844-8.png]]
250 250  
141 +===== Select the bin file to burn =====
251 251  
252 -
253 -(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
254 -(% style="color:blue" %)**3. Select the bin file to burn**
255 -
256 -
257 257  [[image:image-20220602104144-9.png]]
258 258  
259 -
260 260  [[image:image-20220602104251-10.png]]
261 261  
262 -
263 263  [[image:image-20220602104402-11.png]]
264 264  
149 +===== Click to start the download =====
265 265  
266 -
267 -(% class="wikigeneratedid" id="HClicktostartthedownload" %)
268 -(% style="color:blue" %)**4. Click to start the download**
269 -
270 270  [[image:image-20220602104923-13.png]]
271 271  
153 +===== The following figure appears to prove that the burning is in progress =====
272 272  
273 -
274 -(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
275 -(% style="color:blue" %)**5. Check update process**
276 -
277 -
278 278  [[image:image-20220602104948-14.png]]
279 279  
157 +===== The following picture appears to prove that the burning is successful =====
280 280  
281 -
282 -(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
283 -(% style="color:blue" %)**The following picture shows that the burning is successful**
284 -
285 285  [[image:image-20220602105251-15.png]]
286 286  
161 += LA66 USB LoRaWAN Adapter =
287 287  
163 +LA66 USB LoRaWAN Adapter is the USB Adapter for LA66, it combines a USB TTL Chip and LA66 module which can easy to test the LoRaWAN feature by using PC or embedded device which has USB Interface.
288 288  
289 -= 3.  LA66 USB LoRaWAN Adapter =
165 +Before use, please make sure that the computer has installed the CP2102 driver
290 290  
167 +== Pin Mapping & LED ==
291 291  
292 -== 3.1  Overview ==
169 +== Example Send & Get Messages via LoRaWAN in PC ==
293 293  
294 -[[image:image-20220715001142-3.png||height="145" width="220"]]
171 +Connect the LA66 LoRa Shield to the PC
295 295  
296 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
173 +[[image:image-20220602171217-1.png||height="615" width="915"]]
297 297  
298 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
299 -
300 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
301 -
302 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
303 -
304 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
305 -
306 -
307 -== 3.2  Features ==
308 -
309 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
310 -* Ultra-long RF range
311 -* Support LoRaWAN v1.0.4 protocol
312 -* Support peer-to-peer protocol
313 -* TCXO crystal to ensure RF performance on low temperature
314 -* Spring RF antenna
315 -* Available in different frequency LoRaWAN frequency bands.
316 -* World-wide unique OTAA keys.
317 -* AT Command via UART-TTL interface
318 -* Firmware upgradable via UART interface
319 -* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
320 -
321 -== 3.3  Specification ==
322 -
323 -* CPU: 32-bit 48 MHz
324 -* Flash: 256KB
325 -* RAM: 64KB
326 -* Input Power Range: 5v
327 -* Frequency Range: 150 MHz ~~ 960 MHz
328 -* Maximum Power +22 dBm constant RF output
329 -* High sensitivity: -148 dBm
330 -* Temperature:
331 -** Storage: -55 ~~ +125℃
332 -** Operating: -40 ~~ +85℃
333 -* Humidity:
334 -** Storage: 5 ~~ 95% (Non-Condensing)
335 -** Operating: 10 ~~ 95% (Non-Condensing)
336 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
337 -* LoRa Rx current: <9 mA
338 -
339 -== 3.4  Pin Mapping & LED ==
340 -
341 -
342 -
343 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
344 -
345 -
346 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
347 -
348 -
349 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
350 -
351 -
352 -[[image:image-20220602171217-1.png||height="538" width="800"]]
353 -
354 -
355 355  Open the serial port tool
356 356  
357 357  [[image:image-20220602161617-8.png]]
358 358  
359 -[[image:image-20220602161718-9.png||height="457" width="800"]]
179 +[[image:image-20220602161718-9.png||height="529" width="927"]]
360 360  
181 +Press the reset switch RST on the LA66 LoRa Shield.
361 361  
183 +The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
362 362  
363 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
185 +[[image:image-20220602161935-10.png]]
364 364  
365 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
187 +send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
366 366  
367 -
368 -[[image:image-20220602161935-10.png||height="498" width="800"]]
369 -
370 -
371 -
372 -(% style="color:blue" %)**3. See Uplink Command**
373 -
374 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
375 -
376 376  example: AT+SENDB=01,02,8,05820802581ea0a5
377 377  
378 -[[image:image-20220602162157-11.png||height="497" width="800"]]
191 +[[image:image-20220602162157-11.png]]
379 379  
193 +Check to see if TTN received the message
380 380  
195 +[[image:image-20220602162331-12.png||height="547" width="1044"]]
381 381  
382 -(% style="color:blue" %)**4. Check to see if TTN received the message**
197 +== Example Send & Get Messages via LoRaWAN in RPi ==
383 383  
384 -[[image:image-20220602162331-12.png||height="420" width="800"]]
199 +Connect the LA66 LoRa Shield to the RPI
385 385  
201 +[[image:image-20220602171233-2.png||height="592" width="881"]]
386 386  
203 +Log in to the RPI's terminal and connect to the serial port
387 387  
388 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
205 +[[image:image-20220602153146-3.png]]
389 389  
207 +Press the reset switch RST on the LA66 LoRa Shield.
208 +The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
390 390  
391 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
210 +[[image:image-20220602154928-5.png]]
392 392  
212 +send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
393 393  
394 -(% style="color:red" %)**Preconditions:**
395 -
396 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
397 -
398 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
399 -
400 -
401 -
402 -(% style="color:blue" %)**Steps for usage:**
403 -
404 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
405 -
406 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
407 -
408 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
409 -
410 -
411 -
412 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
413 -
414 -
415 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
416 -
417 -
418 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
419 -
420 -[[image:image-20220602171233-2.png||height="538" width="800"]]
421 -
422 -
423 -
424 -(% style="color:blue" %)**2. Install Minicom in RPi.**
425 -
426 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
427 -
428 - (% style="background-color:yellow" %)**apt update**
429 -
430 - (% style="background-color:yellow" %)**apt install minicom**
431 -
432 -
433 -Use minicom to connect to the RPI's terminal
434 -
435 -[[image:image-20220602153146-3.png||height="439" width="500"]]
436 -
437 -
438 -
439 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
440 -
441 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
442 -
443 -
444 -[[image:image-20220602154928-5.png||height="436" width="500"]]
445 -
446 -
447 -
448 -(% style="color:blue" %)**4. Send Uplink message**
449 -
450 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
451 -
452 452  example: AT+SENDB=01,02,8,05820802581ea0a5
453 453  
216 +[[image:image-20220602160339-6.png]]
454 454  
455 -[[image:image-20220602160339-6.png||height="517" width="600"]]
218 +Check to see if TTN received the message
456 456  
220 +[[image:image-20220602160627-7.png||height="468" width="1013"]]
457 457  
222 +=== Install Minicom ===
458 458  
459 -Check to see if TTN received the message
224 +Enter the following command in the RPI terminal
460 460  
461 -[[image:image-20220602160627-7.png||height="369" width="800"]]
226 +apt update
462 462  
228 +[[image:image-20220602143155-1.png]]
463 463  
230 +apt install minicom
464 464  
465 -== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
232 +[[image:image-20220602143744-2.png]]
466 466  
234 +=== Send PC's CPU/RAM usage to TTN via script. ===
467 467  
236 +==== Take python as an example: ====
468 468  
469 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
238 +===== Preconditions: =====
470 470  
240 +1.LA66 USB LoRaWAN Adapter works fine
471 471  
242 +2.LA66 USB LoRaWAN Adapter  is registered with TTN
472 472  
244 +===== Steps for usage =====
473 473  
474 -= 4.  Order Info =
246 +1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
475 475  
248 +2.Run the script and see the TTN
476 476  
477 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
250 +[[image:image-20220602115852-3.png]]
478 478  
479 479  
480 -(% style="color:blue" %)**XXX**(%%): The default frequency band
481 481  
482 -* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
483 -* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
484 -* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
485 -* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
486 -* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
487 -* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
488 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
489 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
490 -* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
254 +== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
491 491  
492 -= 5.  Reference =
493 493  
494 -* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
257 +== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
495 495  
496 496  
image-20220715000242-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -172.4 KB
Content
image-20220715000826-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -820.7 KB
Content
image-20220715001142-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -508.1 KB
Content
image-20220718094030-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -193.3 KB
Content
image-20220718094138-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -100.3 KB
Content
image-20220718094750-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -97.9 KB
Content
image-20220718094950-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -97.7 KB
Content
image-20220718095457-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0