<
From version < 93.2 >
edited by Xiaoling
on 2022/07/15 14:35
To version < 65.1 >
edited by Edwin Chen
on 2022/07/02 23:30
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,502 +1,264 @@
1 -
2 -
3 -**Table of Contents:**
4 -
1 +{{box cssClass="floatinginfobox" title="**Contents**"}}
5 5  {{toc/}}
3 +{{/box}}
6 6  
5 += LA66 LoRaWAN Module =
7 7  
7 +== What is LA66 LoRaWAN Module ==
8 8  
9 -= 1.  LA66 LoRaWAN Module =
10 -
11 -
12 -== 1.1  What is LA66 LoRaWAN Module ==
13 -
14 -
15 -(((
16 -[[image:image-20220715000242-1.png||height="110" width="132"]]
17 -
18 18  (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
19 -)))
20 20  
21 -(((
22 22  (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
23 -)))
24 24  
25 -(((
26 26  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
27 -)))
28 28  
29 -(((
30 30  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
31 -)))
32 32  
33 -(((
34 34  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
35 -)))
36 36  
19 +== Features ==
37 37  
38 -== 1.2  Features ==
39 39  
40 -* Support LoRaWAN v1.0.4 protocol
41 -* Support peer-to-peer protocol
42 -* TCXO crystal to ensure RF performance on low temperature
43 -* SMD Antenna pad and i-pex antenna connector
44 -* Available in different frequency LoRaWAN frequency bands.
45 -* World-wide unique OTAA keys.
46 -* AT Command via UART-TTL interface
47 -* Firmware upgradable via UART interface
48 -* Ultra-long RF range
22 +== Specification ==
49 49  
50 -
51 -
52 -== 1.3  Specification ==
53 -
54 -* CPU: 32-bit 48 MHz
55 -* Flash: 256KB
56 -* RAM: 64KB
57 -* Input Power Range: 1.8v ~~ 3.7v
58 -* Power Consumption: < 4uA.
59 -* Frequency Range: 150 MHz ~~ 960 MHz
60 -* Maximum Power +22 dBm constant RF output
61 -* High sensitivity: -148 dBm
62 -* Temperature:
63 -** Storage: -55 ~~ +125℃
64 -** Operating: -40 ~~ +85℃
65 -* Humidity:
66 -** Storage: 5 ~~ 95% (Non-Condensing)
67 -** Operating: 10 ~~ 95% (Non-Condensing)
68 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
69 -* LoRa Rx current: <9 mA
70 -* I/O Voltage: 3.3v
71 -
72 -
73 -
74 -== 1.4  AT Command ==
75 -
76 -AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
77 -
78 -
79 -== 1.5  Dimension ==
80 -
81 81  [[image:image-20220517072526-1.png]]
82 82  
26 +Input Power Range: 1.8v ~~ 3.7v
83 83  
28 +Power Consumption: < 4uA.
84 84  
85 -== 1.6  Pin Mapping ==
30 +Frequency Range: 150 MHz ~~ 960 MHz
86 86  
32 +Maximum Power +22 dBm constant RF output
87 87  
88 -[[image:image-20220523101537-1.png]]
34 +High sensitivity: -148 dBm
89 89  
36 +Temperature:
90 90  
38 +* Storage: -55 ~~ +125℃
39 +* Operating: -40 ~~ +85℃
91 91  
92 -== 1.7  Land Pattern ==
41 +Humidity:
93 93  
94 -[[image:image-20220517072821-2.png]]
43 +* Storage: 5 ~~ 95% (Non-Condensing)
44 +* Operating: 10 ~~ 95% (Non-Condensing)
95 95  
46 +LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
96 96  
48 +LoRa Rx current: <9 mA
97 97  
98 -= 2.  LA66 LoRaWAN Shield =
50 +I/O Voltage: 3.3v
99 99  
100 100  
101 -== 2.1  Overview ==
53 +== AT Command ==
102 102  
55 +AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
103 103  
104 -[[image:image-20220715000826-2.png||height="386" width="449"]]
105 105  
58 +== Pin Mapping ==
106 106  
107 -LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
60 +[[image:image-20220523101537-1.png]]
108 108  
109 -(((
110 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
111 -)))
62 +== Land Pattern ==
112 112  
113 -(((
114 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
115 -)))
64 +[[image:image-20220517072821-2.png]]
116 116  
117 -(((
118 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
119 -)))
120 120  
121 -(((
122 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
123 -)))
67 +== Part Number ==
124 124  
69 +Part Number: **LA66-XXX**
125 125  
126 -== 2.2  Features ==
71 +**XX**: The default frequency band
127 127  
128 -* Arduino Shield base on LA66 LoRaWAN module
129 -* Support LoRaWAN v1.0.4 protocol
130 -* Support peer-to-peer protocol
131 -* TCXO crystal to ensure RF performance on low temperature
132 -* SMA connector
133 -* Available in different frequency LoRaWAN frequency bands.
134 -* World-wide unique OTAA keys.
135 -* AT Command via UART-TTL interface
136 -* Firmware upgradable via UART interface
137 -* Ultra-long RF range
73 +* **AS923**: LoRaWAN AS923 band
74 +* **AU915**: LoRaWAN AU915 band
75 +* **EU433**: LoRaWAN EU433 band
76 +* **EU868**: LoRaWAN EU868 band
77 +* **KR920**: LoRaWAN KR920 band
78 +* **US915**: LoRaWAN US915 band
79 +* **IN865**: LoRaWAN IN865 band
80 +* **CN470**: LoRaWAN CN470 band
138 138  
82 += LA66 LoRaWAN Shield =
139 139  
84 +LA66 LoRaWAN Shield is the Arduino Breakout PCB to fast test the features of LA66 module and turn Arduino to support LoRaWAN.
140 140  
141 -== 2.3  Specification ==
86 +== Pin Mapping & LED ==
142 142  
143 -* CPU: 32-bit 48 MHz
144 -* Flash: 256KB
145 -* RAM: 64KB
146 -* Input Power Range: 1.8v ~~ 3.7v
147 -* Power Consumption: < 4uA.
148 -* Frequency Range: 150 MHz ~~ 960 MHz
149 -* Maximum Power +22 dBm constant RF output
150 -* High sensitivity: -148 dBm
151 -* Temperature:
152 -** Storage: -55 ~~ +125℃
153 -** Operating: -40 ~~ +85℃
154 -* Humidity:
155 -** Storage: 5 ~~ 95% (Non-Condensing)
156 -** Operating: 10 ~~ 95% (Non-Condensing)
157 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
158 -* LoRa Rx current: <9 mA
159 -* I/O Voltage: 3.3v
88 +== Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
160 160  
90 +== Example: Join TTN network and send an uplink message, get downlink message. ==
161 161  
92 +== Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
162 162  
163 -== 2.4  Pin Mapping & LED ==
94 +== Upgrade Firmware of LA66 LoRaWAN Shield ==
164 164  
96 +=== what needs to be used ===
165 165  
98 +1.LA66 LoRaWAN Shield that needs to be upgraded
166 166  
167 -== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
100 +2.Arduino
168 168  
102 +3.USB TO TTL
169 169  
104 +[[image:image-20220602100052-2.png]]
170 170  
171 -== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
106 +=== Wiring Schematic ===
172 172  
108 +[[image:image-20220602101311-3.png]]
173 173  
110 +LA66 LoRaWAN Shield  >>>>>>>>>>>>USB TTL
174 174  
175 -== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
112 +GND  >>>>>>>>>>>>GND
176 176  
114 +TXD  >>>>>>>>>>>>TXD
177 177  
116 +RXD  >>>>>>>>>>>>RXD
178 178  
179 -== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
118 +JP6 of LA66 LoRaWAN Shield needs to be connected with yellow jumper cap
180 180  
120 +Connect to the PC after connecting the wires
181 181  
182 -=== 2.8.1  Items needed for update ===
122 +[[image:image-20220602102240-4.png]]
183 183  
184 -1. LA66 LoRaWAN Shield
185 -1. Arduino
186 -1. USB TO TTL Adapter
124 +=== Upgrade steps ===
187 187  
188 -[[image:image-20220602100052-2.png||height="385" width="600"]]
126 +==== Dial the SW1 of the LA66 LoRaWAN Shield to the ISP's location as shown in the figure below ====
189 189  
128 +[[image:image-20220602102824-5.png]]
190 190  
191 -=== 2.8.2  Connection ===
130 +==== Press the RST switch on the LA66 LoRaWAN Shield once ====
192 192  
132 +[[image:image-20220602104701-12.png]]
193 193  
194 -[[image:image-20220602101311-3.png||height="276" width="600"]]
134 +==== Open the upgrade application software ====
195 195  
136 +Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]
196 196  
197 -(((
198 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
199 -)))
200 -
201 -(((
202 -(% style="background-color:yellow" %)**GND  <-> GND
203 -TXD  <->  TXD
204 -RXD  <->  RXD**
205 -)))
206 -
207 -
208 -Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
209 -
210 -Connect USB TTL Adapter to PC after connecting the wires
211 -
212 -
213 -[[image:image-20220602102240-4.png||height="304" width="600"]]
214 -
215 -
216 -=== 2.8.3  Upgrade steps ===
217 -
218 -
219 -==== 1.  Switch SW1 to put in ISP position ====
220 -
221 -
222 -[[image:image-20220602102824-5.png||height="306" width="600"]]
223 -
224 -
225 -
226 -==== 2.  Press the RST switch once ====
227 -
228 -
229 -[[image:image-20220602104701-12.png||height="285" width="600"]]
230 -
231 -
232 -
233 -==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
234 -
235 -
236 -(((
237 -(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
238 -)))
239 -
240 -
241 241  [[image:image-20220602103227-6.png]]
242 242  
243 -
244 244  [[image:image-20220602103357-7.png]]
245 245  
142 +===== Select the COM port corresponding to USB TTL =====
246 246  
247 -
248 -(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
249 -(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
250 -
251 -
252 252  [[image:image-20220602103844-8.png]]
253 253  
146 +===== Select the bin file to burn =====
254 254  
255 -
256 -(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
257 -(% style="color:blue" %)**3. Select the bin file to burn**
258 -
259 -
260 260  [[image:image-20220602104144-9.png]]
261 261  
262 -
263 263  [[image:image-20220602104251-10.png]]
264 264  
265 -
266 266  [[image:image-20220602104402-11.png]]
267 267  
154 +===== Click to start the download =====
268 268  
269 -
270 -(% class="wikigeneratedid" id="HClicktostartthedownload" %)
271 -(% style="color:blue" %)**4. Click to start the download**
272 -
273 273  [[image:image-20220602104923-13.png]]
274 274  
158 +===== The following figure appears to prove that the burning is in progress =====
275 275  
276 -
277 -(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
278 -(% style="color:blue" %)**5. Check update process**
279 -
280 -
281 281  [[image:image-20220602104948-14.png]]
282 282  
162 +===== The following picture appears to prove that the burning is successful =====
283 283  
284 -
285 -(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
286 -(% style="color:blue" %)**The following picture shows that the burning is successful**
287 -
288 288  [[image:image-20220602105251-15.png]]
289 289  
166 += LA66 USB LoRaWAN Adapter =
290 290  
168 +LA66 USB LoRaWAN Adapter is the USB Adapter for LA66, it combines a USB TTL Chip and LA66 module which can easy to test the LoRaWAN feature by using PC or embedded device which has USB Interface.
291 291  
292 -= 3.  LA66 USB LoRaWAN Adapter =
170 +Before use, please make sure that the computer has installed the CP2102 driver
293 293  
172 +== Pin Mapping & LED ==
294 294  
295 -== 3.1  Overview ==
174 +== Example Send & Get Messages via LoRaWAN in PC ==
296 296  
297 -[[image:image-20220715001142-3.png||height="145" width="220"]]
176 +Connect the LA66 LoRa Shield to the PC
298 298  
299 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
178 +[[image:image-20220602171217-1.png||height="615" width="915"]]
300 300  
301 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
302 -
303 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
304 -
305 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
306 -
307 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
308 -
309 -
310 -== 3.2  Features ==
311 -
312 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
313 -* Ultra-long RF range
314 -* Support LoRaWAN v1.0.4 protocol
315 -* Support peer-to-peer protocol
316 -* TCXO crystal to ensure RF performance on low temperature
317 -* Spring RF antenna
318 -* Available in different frequency LoRaWAN frequency bands.
319 -* World-wide unique OTAA keys.
320 -* AT Command via UART-TTL interface
321 -* Firmware upgradable via UART interface
322 -
323 -
324 -
325 -== 3.3  Specification ==
326 -
327 -* CPU: 32-bit 48 MHz
328 -* Flash: 256KB
329 -* RAM: 64KB
330 -* Input Power Range: 5v
331 -* Frequency Range: 150 MHz ~~ 960 MHz
332 -* Maximum Power +22 dBm constant RF output
333 -* High sensitivity: -148 dBm
334 -* Temperature:
335 -** Storage: -55 ~~ +125℃
336 -** Operating: -40 ~~ +85℃
337 -* Humidity:
338 -** Storage: 5 ~~ 95% (Non-Condensing)
339 -** Operating: 10 ~~ 95% (Non-Condensing)
340 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
341 -* LoRa Rx current: <9 mA
342 -
343 -
344 -
345 -== 3.4  Pin Mapping & LED ==
346 -
347 -
348 -
349 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
350 -
351 -
352 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
353 -
354 -
355 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
356 -
357 -
358 -[[image:image-20220602171217-1.png||height="538" width="800"]]
359 -
360 -
361 361  Open the serial port tool
362 362  
363 363  [[image:image-20220602161617-8.png]]
364 364  
365 -[[image:image-20220602161718-9.png||height="457" width="800"]]
184 +[[image:image-20220602161718-9.png||height="529" width="927"]]
366 366  
186 +Press the reset switch RST on the LA66 LoRa Shield.
367 367  
188 +The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
368 368  
369 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
190 +[[image:image-20220602161935-10.png]]
370 370  
371 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
192 +send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
372 372  
373 -
374 -[[image:image-20220602161935-10.png||height="498" width="800"]]
375 -
376 -
377 -
378 -(% style="color:blue" %)**3. See Uplink Command**
379 -
380 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
381 -
382 382  example: AT+SENDB=01,02,8,05820802581ea0a5
383 383  
384 -[[image:image-20220602162157-11.png||height="497" width="800"]]
196 +[[image:image-20220602162157-11.png]]
385 385  
198 +Check to see if TTN received the message
386 386  
200 +[[image:image-20220602162331-12.png||height="547" width="1044"]]
387 387  
388 -(% style="color:blue" %)**4. Check to see if TTN received the message**
202 +== Example Send & Get Messages via LoRaWAN in RPi ==
389 389  
390 -[[image:image-20220602162331-12.png||height="420" width="800"]]
204 +Connect the LA66 LoRa Shield to the RPI
391 391  
206 +[[image:image-20220602171233-2.png||height="592" width="881"]]
392 392  
208 +Log in to the RPI's terminal and connect to the serial port
393 393  
394 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
210 +[[image:image-20220602153146-3.png]]
395 395  
212 +Press the reset switch RST on the LA66 LoRa Shield.
213 +The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
396 396  
397 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
215 +[[image:image-20220602154928-5.png]]
398 398  
217 +send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
399 399  
400 -(% style="color:red" %)**Preconditions:**
401 -
402 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
403 -
404 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
405 -
406 -
407 -
408 -(% style="color:blue" %)**Steps for usage:**
409 -
410 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
411 -
412 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
413 -
414 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
415 -
416 -
417 -
418 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
419 -
420 -
421 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
422 -
423 -
424 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
425 -
426 -[[image:image-20220602171233-2.png||height="538" width="800"]]
427 -
428 -
429 -
430 -(% style="color:blue" %)**2. Install Minicom in RPi.**
431 -
432 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
433 -
434 - (% style="background-color:yellow" %)**apt update**
435 -
436 - (% style="background-color:yellow" %)**apt install minicom**
437 -
438 -
439 -Use minicom to connect to the RPI's terminal
440 -
441 -[[image:image-20220602153146-3.png||height="439" width="500"]]
442 -
443 -
444 -
445 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
446 -
447 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
448 -
449 -
450 -[[image:image-20220602154928-5.png||height="436" width="500"]]
451 -
452 -
453 -
454 -(% style="color:blue" %)**4. Send Uplink message**
455 -
456 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
457 -
458 458  example: AT+SENDB=01,02,8,05820802581ea0a5
459 459  
221 +[[image:image-20220602160339-6.png]]
460 460  
461 -[[image:image-20220602160339-6.png||height="517" width="600"]]
223 +Check to see if TTN received the message
462 462  
225 +[[image:image-20220602160627-7.png||height="468" width="1013"]]
463 463  
227 +=== Install Minicom ===
464 464  
465 -Check to see if TTN received the message
229 +Enter the following command in the RPI terminal
466 466  
467 -[[image:image-20220602160627-7.png||height="369" width="800"]]
231 +apt update
468 468  
233 +[[image:image-20220602143155-1.png]]
469 469  
235 +apt install minicom
470 470  
471 -== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
237 +[[image:image-20220602143744-2.png]]
472 472  
239 +=== Send PC's CPU/RAM usage to TTN via script. ===
473 473  
241 +==== Take python as an example: ====
474 474  
475 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
243 +===== Preconditions: =====
476 476  
245 +1.LA66 USB LoRaWAN Adapter works fine
477 477  
247 +2.LA66 USB LoRaWAN Adapter  is registered with TTN
478 478  
249 +===== Steps for usage =====
479 479  
480 -= 4.  Order Info =
251 +1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
481 481  
253 +2.Run the script and see the TTN
482 482  
483 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
255 +[[image:image-20220602115852-3.png]]
484 484  
485 485  
486 -(% style="color:blue" %)**XXX**(%%): The default frequency band
487 487  
488 -* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
489 -* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
490 -* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
491 -* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
492 -* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
493 -* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
494 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
495 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
496 -* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
259 +== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
497 497  
498 -= 5.  Reference =
499 499  
500 -* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
262 +== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
501 501  
502 502  
image-20220715000242-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -172.4 KB
Content
image-20220715000826-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -820.7 KB
Content
image-20220715001142-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -508.1 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0