Last modified by Xiaoling on 2025/02/07 16:37

From version 158.1
edited by Bei Jinggeng
on 2022/12/10 14:13
Change comment: There is no comment for this version
To version 133.1
edited by Herong Lu
on 2022/07/23 17:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LA66 USB LoRaWAN Adapter User Manual
1 +LA66 LoRaWAN Module
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.Lu
Content
... ... @@ -1,4 +1,4 @@
1 -
1 +0
2 2  
3 3  **Table of Contents:**
4 4  
... ... @@ -6,26 +6,34 @@
6 6  
7 7  
8 8  
9 += 1.  LA66 LoRaWAN Module =
9 9  
10 10  
11 -= 1.  LA66 USB LoRaWAN Adapter =
12 +== 1.1  What is LA66 LoRaWAN Module ==
12 12  
13 13  
14 -== 1.1  Overview ==
15 +(((
16 +(((
17 +[[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 +)))
15 15  
20 +(((
21 +
22 +)))
16 16  
17 -[[image:image-20220715001142-3.png||height="145" width="220"]]
18 -
19 -
20 20  (((
21 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
25 +(% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
22 22  )))
27 +)))
23 23  
24 24  (((
30 +(((
25 25  (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
26 26  )))
33 +)))
27 27  
28 28  (((
36 +(((
29 29  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
30 30  )))
31 31  
... ... @@ -32,36 +32,35 @@
32 32  (((
33 33  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
34 34  )))
43 +)))
35 35  
36 36  (((
46 +(((
37 37  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
38 38  )))
49 +)))
39 39  
40 40  
41 41  
42 42  == 1.2  Features ==
43 43  
44 -
45 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
46 -* Ultra-long RF range
47 47  * Support LoRaWAN v1.0.4 protocol
48 48  * Support peer-to-peer protocol
49 49  * TCXO crystal to ensure RF performance on low temperature
50 -* Spring RF antenna
58 +* SMD Antenna pad and i-pex antenna connector
51 51  * Available in different frequency LoRaWAN frequency bands.
52 52  * World-wide unique OTAA keys.
53 53  * AT Command via UART-TTL interface
54 54  * Firmware upgradable via UART interface
55 -* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
63 +* Ultra-long RF range
56 56  
57 -
58 58  == 1.3  Specification ==
59 59  
60 -
61 61  * CPU: 32-bit 48 MHz
62 62  * Flash: 256KB
63 63  * RAM: 64KB
64 -* Input Power Range: 5v
70 +* Input Power Range: 1.8v ~~ 3.7v
71 +* Power Consumption: < 4uA.
65 65  * Frequency Range: 150 MHz ~~ 960 MHz
66 66  * Maximum Power +22 dBm constant RF output
67 67  * High sensitivity: -148 dBm
... ... @@ -73,418 +73,572 @@
73 73  ** Operating: 10 ~~ 95% (Non-Condensing)
74 74  * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
75 75  * LoRa Rx current: <9 mA
83 +* I/O Voltage: 3.3v
76 76  
85 +== 1.4  AT Command ==
77 77  
78 -== 1.4  Pin Mapping & LED ==
79 79  
88 +AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
80 80  
81 -[[image:image-20220813183239-3.png||height="526" width="662"]]
82 82  
83 83  
92 +== 1.5  Dimension ==
84 84  
85 -== 1.5  Example: Send & Get Messages via LoRaWAN in PC ==
94 +[[image:image-20220718094750-3.png]]
86 86  
87 87  
88 -(((
89 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
90 -)))
91 91  
98 +== 1.6  Pin Mapping ==
92 92  
93 -(% style="color:blue" %)**1.  Connect the LA66 USB LoRaWAN adapter to PC**
100 +[[image:image-20220720111850-1.png]]
94 94  
95 95  
96 -[[image:image-20220723100027-1.png]]
97 97  
104 +== 1.7  Land Pattern ==
98 98  
99 -Open the serial port tool
106 +[[image:image-20220517072821-2.png]]
100 100  
101 -[[image:image-20220602161617-8.png]]
102 102  
103 103  
104 -[[image:image-20220602161718-9.png||height="457" width="800"]]
110 += 2.  LA66 LoRaWAN Shield =
105 105  
106 106  
113 +== 2.1  Overview ==
107 107  
108 -(% style="color:blue" %)**2.  Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
109 109  
116 +(((
117 +[[image:image-20220715000826-2.png||height="145" width="220"]]
118 +)))
110 110  
111 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
120 +(((
121 +
122 +)))
112 112  
124 +(((
125 +(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
126 +)))
113 113  
114 -[[image:image-20220602161935-10.png||height="498" width="800"]]
128 +(((
129 +(((
130 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
131 +)))
132 +)))
115 115  
134 +(((
135 +(((
136 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
137 +)))
138 +)))
116 116  
140 +(((
141 +(((
142 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
143 +)))
144 +)))
117 117  
118 -(% style="color:blue" %)**3.  See Uplink Command**
146 +(((
147 +(((
148 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
149 +)))
150 +)))
119 119  
120 120  
121 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
122 122  
123 -example: AT+SENDB=01,02,8,05820802581ea0a5
154 +== 2.2  Features ==
124 124  
125 -[[image:image-20220602162157-11.png||height="497" width="800"]]
156 +* Arduino Shield base on LA66 LoRaWAN module
157 +* Support LoRaWAN v1.0.4 protocol
158 +* Support peer-to-peer protocol
159 +* TCXO crystal to ensure RF performance on low temperature
160 +* SMA connector
161 +* Available in different frequency LoRaWAN frequency bands.
162 +* World-wide unique OTAA keys.
163 +* AT Command via UART-TTL interface
164 +* Firmware upgradable via UART interface
165 +* Ultra-long RF range
126 126  
167 +== 2.3  Specification ==
127 127  
169 +* CPU: 32-bit 48 MHz
170 +* Flash: 256KB
171 +* RAM: 64KB
172 +* Input Power Range: 1.8v ~~ 3.7v
173 +* Power Consumption: < 4uA.
174 +* Frequency Range: 150 MHz ~~ 960 MHz
175 +* Maximum Power +22 dBm constant RF output
176 +* High sensitivity: -148 dBm
177 +* Temperature:
178 +** Storage: -55 ~~ +125℃
179 +** Operating: -40 ~~ +85℃
180 +* Humidity:
181 +** Storage: 5 ~~ 95% (Non-Condensing)
182 +** Operating: 10 ~~ 95% (Non-Condensing)
183 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
184 +* LoRa Rx current: <9 mA
185 +* I/O Voltage: 3.3v
128 128  
129 -(% style="color:blue" %)**4Check to see if TTN received the message**
187 +== 2.4  LED ==
130 130  
189 +~1. The LED lights up red when there is an upstream data packet
190 +2. When the network is successfully connected, the green light will be on for 5 seconds
191 +3. Purple light on when receiving downlink data packets
131 131  
132 -[[image:image-20220817093644-1.png]]
133 133  
194 +== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
134 134  
196 +Show connection diagram:
135 135  
136 -== 1.6  Example: How to join helium ==
198 +[[image:image-20220723170210-2.png||height="908" width="681"]]
137 137  
200 +1.open Arduino IDE
138 138  
202 +[[image:image-20220723170545-4.png]]
139 139  
140 -(% style="color:blue" %)**1.  Create a new device.**
204 +2.Open project
141 141  
206 +[[image:image-20220723170750-5.png||height="533" width="930"]]
142 142  
143 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Shield%20User%20Manual/WebHome/image-20220907165500-1.png?width=940&height=464&rev=1.1||alt="image-20220907165500-1.png"]]
208 +3.Click the button marked 1 in the figure to compile, and after the compilation is complete, click the button marked 2 in the figure to upload
144 144  
210 +[[image:image-20220723171228-6.png]]
145 145  
212 +4.After the upload is successful, open the serial port monitoring and send the AT command
146 146  
147 -(% style="color:blue" %)**2.  Save the device after filling in the necessary information.**
214 +[[image:image-20220723172235-7.png||height="480" width="1027"]]
148 148  
216 +== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
149 149  
150 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Shield%20User%20Manual/WebHome/image-20220907165837-2.png?width=809&height=375&rev=1.1||alt="image-20220907165837-2.png" height="375" width="809"]]
218 +1.Open project
151 151  
220 +[[image:image-20220723172502-8.png]]
152 152  
222 +2.Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets
153 153  
154 -(% style="color:blue" %)**3.  Use AT commands.**
224 +[[image:image-20220723172938-9.png||height="652" width="1050"]]
155 155  
156 156  
157 -[[image:image-20220909151441-1.jpeg||height="695" width="521"]]
227 +== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in Node-RED. ==
158 158  
229 +1.Open project
159 159  
231 +[[image:image-20220723173341-10.png||height="581" width="1014"]]
160 160  
161 -(% style="color:blue" %)**4.  Use the serial port tool**
233 +2.Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets
162 162  
235 +[[image:image-20220723173950-11.png||height="665" width="1012"]]
163 163  
164 -[[image:image-20220909151517-2.png||height="543" width="708"]]
237 +3.Integration into Node-red via TTNV3
165 165  
239 +For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
166 166  
241 +[[image:image-20220723175700-12.png||height="602" width="995"]]
167 167  
168 -(% style="color:blue" %)**5.  Use command AT+CFG to get device configuration**
243 +== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
169 169  
170 170  
171 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Shield%20User%20Manual/WebHome/image-20220907170308-3.png?width=617&height=556&rev=1.1||alt="image-20220907170308-3.png" height="556" width="617"]]
246 +=== 2.8.1  Items needed for update ===
172 172  
248 +1. LA66 LoRaWAN Shield
249 +1. Arduino
250 +1. USB TO TTL Adapter
173 173  
252 +[[image:image-20220602100052-2.png||height="385" width="600"]]
174 174  
175 -(% style="color:blue" %)**6.  Network successfully.**
176 176  
255 +=== 2.8.2  Connection ===
177 177  
178 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Shield%20User%20Manual/WebHome/image-20220907170436-4.png?rev=1.1||alt="image-20220907170436-4.png"]]
179 179  
258 +[[image:image-20220602101311-3.png||height="276" width="600"]]
180 180  
181 181  
182 -(% style="color:blue" %)**7.  Send uplink using command**
261 +(((
262 +(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
263 +)))
183 183  
265 +(((
266 +(% style="background-color:yellow" %)**GND  <-> GND
267 +TXD  <->  TXD
268 +RXD  <->  RXD**
269 +)))
184 184  
185 -[[image:image-20220912085244-1.png]]
186 186  
272 +Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
187 187  
188 -[[image:image-20220912085307-2.png]]
274 +Connect USB TTL Adapter to PC after connecting the wires
189 189  
190 190  
277 +[[image:image-20220602102240-4.png||height="304" width="600"]]
191 191  
192 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Shield%20User%20Manual/WebHome/image-20220907170744-6.png?width=798&height=242&rev=1.1||alt="image-20220907170744-6.png" height="242" width="798"]]
193 193  
280 +=== 2.8.3  Upgrade steps ===
194 194  
195 195  
196 -== 1.7  Example: Send PC's CPU/RAM usage to TTN via python ==
283 +==== 1.  Switch SW1 to put in ISP position ====
197 197  
198 198  
199 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
286 +[[image:image-20220602102824-5.png||height="306" width="600"]]
200 200  
201 -(**Raspberry Pi example: **[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py]])
202 202  
203 203  
204 -(% style="color:red" %)**Preconditions:**
290 +==== 2.  Press the RST switch once ====
205 205  
206 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
207 207  
208 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapteis registered with TTN**
293 +[[image:image-20220602104701-12.png||height="285" width="600"]]
209 209  
210 210  
211 211  
212 -(% style="color:blue" %)**Steps for usage:**
297 +==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
213 213  
214 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
215 215  
216 -(% style="color:blue" %)**2.**(%%) Add [[decoder>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LA66%20USB]] on TTN
300 +(((
301 +(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
302 +)))
217 217  
218 -(% style="color:blue" %)**3.**(%%) Run the python script in PC and see the TTN
219 219  
305 +[[image:image-20220602103227-6.png]]
220 220  
221 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
222 222  
308 +[[image:image-20220602103357-7.png]]
223 223  
224 224  
225 -== 1.8  Example: Send & Get Messages via LoRaWAN in RPi ==
226 226  
312 +(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
313 +(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
227 227  
228 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
229 229  
316 +[[image:image-20220602103844-8.png]]
230 230  
231 -(% style="color:blue" %)**1.  Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
232 232  
233 233  
234 -[[image:image-20220723100439-2.png]]
320 +(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
321 +(% style="color:blue" %)**3. Select the bin file to burn**
235 235  
236 236  
324 +[[image:image-20220602104144-9.png]]
237 237  
238 -(% style="color:blue" %)**2.  Install Minicom in RPi.**
239 239  
327 +[[image:image-20220602104251-10.png]]
240 240  
241 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
242 242  
243 - (% style="background-color:yellow" %)**apt update**
330 +[[image:image-20220602104402-11.png]]
244 244  
245 - (% style="background-color:yellow" %)**apt install minicom**
246 246  
247 247  
248 -Use minicom to connect to the RPI's terminal
334 +(% class="wikigeneratedid" id="HClicktostartthedownload" %)
335 +(% style="color:blue" %)**4. Click to start the download**
249 249  
250 -[[image:image-20220602153146-3.png||height="439" width="500"]]
337 +[[image:image-20220602104923-13.png]]
251 251  
252 252  
253 253  
254 -(% style="color:blue" %)**3.  Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
341 +(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
342 +(% style="color:blue" %)**5. Check update process**
255 255  
256 256  
257 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
345 +[[image:image-20220602104948-14.png]]
258 258  
259 259  
260 -[[image:image-20220602154928-5.png||height="436" width="500"]]
261 261  
349 +(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
350 +(% style="color:blue" %)**The following picture shows that the burning is successful**
262 262  
352 +[[image:image-20220602105251-15.png]]
263 263  
264 -(% style="color:blue" %)**4.  Send Uplink message**
265 265  
266 266  
267 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
356 += 3.  LA66 USB LoRaWAN Adapter =
268 268  
269 -example: AT+SENDB=01,02,8,05820802581ea0a5
270 270  
359 +== 3.1  Overview ==
271 271  
272 -[[image:image-20220602160339-6.png||height="517" width="600"]]
273 273  
362 +[[image:image-20220715001142-3.png||height="145" width="220"]]
274 274  
275 275  
276 -Check to see if TTN received the message
365 +(((
366 +(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
367 +)))
277 277  
369 +(((
370 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
371 +)))
278 278  
279 -[[image:image-20220602160627-7.png||height="369" width="800"]]
373 +(((
374 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
375 +)))
280 280  
377 +(((
378 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
379 +)))
281 281  
381 +(((
382 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
383 +)))
282 282  
283 -== 1.9  Example: Use of LA66 USB LoRaWAN Adapter and mobile APP ==
284 284  
285 285  
286 -=== 1.9.1  Hardware and Software Connection ===
387 +== 3.2  Features ==
287 287  
389 +* LoRaWAN USB adapter base on LA66 LoRaWAN module
390 +* Ultra-long RF range
391 +* Support LoRaWAN v1.0.4 protocol
392 +* Support peer-to-peer protocol
393 +* TCXO crystal to ensure RF performance on low temperature
394 +* Spring RF antenna
395 +* Available in different frequency LoRaWAN frequency bands.
396 +* World-wide unique OTAA keys.
397 +* AT Command via UART-TTL interface
398 +* Firmware upgradable via UART interface
399 +* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
288 288  
401 +== 3.3  Specification ==
289 289  
290 -==== (% style="color:blue" %)**Overview:**(%%) ====
403 +* CPU: 32-bit 48 MHz
404 +* Flash: 256KB
405 +* RAM: 64KB
406 +* Input Power Range: 5v
407 +* Frequency Range: 150 MHz ~~ 960 MHz
408 +* Maximum Power +22 dBm constant RF output
409 +* High sensitivity: -148 dBm
410 +* Temperature:
411 +** Storage: -55 ~~ +125℃
412 +** Operating: -40 ~~ +85℃
413 +* Humidity:
414 +** Storage: 5 ~~ 95% (Non-Condensing)
415 +** Operating: 10 ~~ 95% (Non-Condensing)
416 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
417 +* LoRa Rx current: <9 mA
291 291  
419 +== 3.4  Pin Mapping & LED ==
292 292  
293 -(((
294 -DRAGINO-LA66-APP is an Open Source mobile APP for LA66 USB LoRaWAN Adapter. DRAGINO-LA66-APP has below features:
295 295  
296 -* Send real-time location information of mobile phone to LoRaWAN network.
297 -* Check LoRaWAN network signal strengh.
298 -* Manually send messages to LoRaWAN network.
422 +
423 +== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
424 +
425 +
426 +(((
427 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
299 299  )))
300 300  
301 301  
431 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
302 302  
303 303  
434 +[[image:image-20220723100027-1.png]]
304 304  
305 -==== (% style="color:blue" %)**Hardware Connection:**(%%) ====
306 306  
437 +Open the serial port tool
307 307  
308 -A USB to Type-C adapter is needed to connect to a Mobile phone.
439 +[[image:image-20220602161617-8.png]]
309 309  
310 -Note: The package of LA66 USB adapter already includes this USB Type-C adapter.
441 +[[image:image-20220602161718-9.png||height="457" width="800"]]
311 311  
312 -[[image:image-20220813174353-2.png||height="360" width="313"]]
313 313  
314 314  
445 +(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
315 315  
447 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
316 316  
317 -==== (% style="color:blue" %)**Download and Install App:**(%%) ====
318 318  
450 +[[image:image-20220602161935-10.png||height="498" width="800"]]
319 319  
320 -[[(% id="cke_bm_895007S" style="display:none" %)** **(%%)**Download Link for Android apk **>>https://www.dropbox.com/sh/zxwx16qb777uvkz/AABE_P8coGCQ4DAC8enH4bUya?dl=0]].  (Android Version Only)
321 321  
322 322  
323 -[[image:image-20220813173738-1.png]]
454 +(% style="color:blue" %)**3. See Uplink Command**
324 324  
456 +Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
325 325  
458 +example: AT+SENDB=01,02,8,05820802581ea0a5
326 326  
460 +[[image:image-20220602162157-11.png||height="497" width="800"]]
327 327  
328 -==== (% style="color:blue" %)**Use of APP:**(%%) ====
329 329  
330 330  
331 -Function and page introduction
464 +(% style="color:blue" %)**4. Check to see if TTN received the message**
332 332  
466 +[[image:image-20220602162331-12.png||height="420" width="800"]]
333 333  
334 -[[image:image-20220723113448-7.png||height="995" width="450"]]
335 335  
336 336  
337 -**Block Explain:**
470 +== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
338 338  
339 -1.  Display LA66 USB LoRaWAN Module connection status
340 340  
341 -2.  Check and reconnect
473 +**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
342 342  
343 -3.  Turn send timestamps on or off
475 +(**Raspberry Pi example: **[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py]])
344 344  
345 -4.  Display LoRaWan connection status
477 +(% style="color:red" %)**Preconditions:**
346 346  
347 -5.  Check LoRaWan connection status
479 +(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
348 348  
349 -6.  The RSSI value of the node when the ACK is received
481 +(% style="color:red" %)**2. LA66 USB LoRaWAN Adapte is registered with TTN**
350 350  
351 -7.  Node's Signal Strength Icon
352 352  
353 -8.  Configure Location Uplink Interval
354 354  
355 -9.  AT command input box
485 +(% style="color:blue" %)**Steps for usage:**
356 356  
357 -10.  Send Button:  Send input box info to LA66 USB Adapter
487 +(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
358 358  
359 -11.  Output Log from LA66 USB adapter
489 +(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
360 360  
361 -12.  clear log button
491 +[[image:image-20220602115852-3.png||height="450" width="1187"]]
362 362  
363 -13.  exit button
364 364  
365 365  
495 +== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
366 366  
367 -LA66 USB LoRaWAN Module not connected
368 368  
498 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
369 369  
370 -[[image:image-20220723110520-5.png||height="677" width="508"]]
371 371  
501 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
372 372  
503 +[[image:image-20220723100439-2.png]]
373 373  
374 -Connect LA66 USB LoRaWAN Module
375 375  
376 376  
377 -[[image:image-20220723110626-6.png||height="681" width="511"]]
507 +(% style="color:blue" %)**2. Install Minicom in RPi.**
378 378  
509 +(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
379 379  
511 + (% style="background-color:yellow" %)**apt update**
380 380  
513 + (% style="background-color:yellow" %)**apt install minicom**
381 381  
382 -=== 1.9.2  Send data to TTNv3 and plot location info in Node-Red ===
383 383  
516 +Use minicom to connect to the RPI's terminal
384 384  
385 -(% style="color:blue" %)**1.  Register LA66 USB LoRaWAN Module to TTNV3**
518 +[[image:image-20220602153146-3.png||height="439" width="500"]]
386 386  
387 387  
388 -[[image:image-20220723134549-8.png]]
389 389  
522 +(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
390 390  
524 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
391 391  
392 -(% style="color:blue" %)**2.  Open Node-RED,And import the JSON file to generate the flow**
393 393  
527 +[[image:image-20220602154928-5.png||height="436" width="500"]]
394 394  
395 -Sample JSON file please go to **[[this link>>https://www.dropbox.com/sh/zxwx16qb777uvkz/AABE_P8coGCQ4DAC8enH4bUya?dl=0]]** to download.
396 396  
397 -For the usage of Node-RED, please refer to: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Node-RED/>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]]
398 398  
399 -After see LoRaWAN Online, walk around and the APP will keep sending location info to LoRaWAN server and then to the Node Red.
531 +(% style="color:blue" %)**4. Send Uplink message**
400 400  
401 -LA66~-~-node-red~-~-decoder:[[dragino-end-node-decoder/Node-RED at main · dragino/dragino-end-node-decoder · GitHub>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Node-RED]]
533 +Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
402 402  
535 +example: AT+SENDB=01,02,8,05820802581ea0a5
403 403  
404 -Example output in NodeRed is as below:
405 405  
406 -[[image:image-20220723144339-1.png]]
538 +[[image:image-20220602160339-6.png||height="517" width="600"]]
407 407  
408 408  
409 409  
410 -== 1.10  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
542 +Check to see if TTN received the message
411 411  
544 +[[image:image-20220602160627-7.png||height="369" width="800"]]
412 412  
413 -The LA66 USB LoRaWAN Adapter is the same as the LA66 LoRaWAN Shield update method.
414 414  
415 -Just use the yellow jumper cap to short the BOOT corner and the RX corner, and then press the RESET button (without the jumper cap, you can directly short the BOOT corner and the RX corner with a wire to achieve the same effect).
416 416  
548 +== 3.8  Example: Use of LA66 USB LoRaWAN Module and DRAGINO-LA66-APP. ==
417 417  
418 -[[image:image-20220723150132-2.png]]
550 +=== 3.8.1 DRAGINO-LA66-APP ===
419 419  
552 +[[image:image-20220723102027-3.png]]
420 420  
554 +==== Overview: ====
421 421  
422 -= 2.  FAQ =
556 +DRAGINO-LA66-APP is a mobile APP for LA66 USB LoRaWAN Module. DRAGINO-LA66-APP can obtain the positioning information of the mobile phone and send it to the LoRaWAN platform through the LA66 USB LoRaWAN Module.
423 423  
558 +View the communication signal strength between the node and the gateway through the RSSI value(DRAGINO-LA66-APP currently only supports Android system)
424 424  
425 -== 2.1  How to Compile Source Code for LA66? ==
560 +==== Conditions of Use: ====
426 426  
562 +Requires a type-c to USB adapter
427 427  
428 -Compile and Upload Code to ASR6601 Platform :[[Instruction>>Main.User Manual for LoRaWAN End Nodes.LA66 LoRaWAN Module.Compile and Upload Code to ASR6601 Platform.WebHome]]
564 +[[image:image-20220723104754-4.png]]
429 429  
566 +==== Use of APP: ====
430 430  
568 +Function and page introduction
431 431  
432 -== 2.2  Where to find Peer-to-Peer firmware of LA66? ==
570 +[[image:image-20220723113448-7.png||height="1481" width="670"]]
433 433  
572 +1.Display LA66 USB LoRaWAN Module connection status
434 434  
435 -Instruction for LA66 Peer to Peer firmware :[[ Instruction >>doc:Main.User Manual for LoRaWAN End Nodes.LA66 LoRaWAN Shield User Manual.Instruction for LA66 Peer to Peer firmware.WebHome]]
574 +2.Check and reconnect
436 436  
576 +3.Turn send timestamps on or off
437 437  
578 +4.Display LoRaWan connection status
438 438  
439 -= 3.  Order Info =
580 +5.Check LoRaWan connection status
440 440  
582 +6.The RSSI value of the node when the ACK is received
441 441  
442 -**Part Number:**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
584 +7.Node's Signal Strength Icon
443 443  
586 +8.Set the packet sending interval of the node in seconds
444 444  
445 -(% style="color:blue" %)**XXX**(%%): The default frequency band
588 +9.AT command input box
446 446  
447 -* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
448 -* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
449 -* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
450 -* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
451 -* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
452 -* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
453 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
454 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
455 -* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
590 +10.Send AT command button
456 456  
592 +11.Node log box
457 457  
458 -= 4.  Reference =
594 +12.clear log button
459 459  
596 +13.exit button
460 460  
461 -* Hardware Design File for LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
462 -* Mobile Phone App Source Code: [[Download>>https://github.com/dragino/LA66_Mobile_App]].
598 +LA66 USB LoRaWAN Module not connected
463 463  
600 +[[image:image-20220723110520-5.png||height="903" width="677"]]
464 464  
465 -= 5.  FCC Statement =
602 +Connect LA66 USB LoRaWAN Module
466 466  
604 +[[image:image-20220723110626-6.png||height="906" width="680"]]
467 467  
468 -(% style="color:red" %)**FCC Caution:**
606 +=== 3.8.2 Use DRAGINO-LA66-APP to obtain positioning information and send it to TTNV3 through LA66 USB LoRaWAN Module and integrate it into Node-RED ===
469 469  
470 -Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
608 +1.Register LA66 USB LoRaWAN Module to TTNV3
471 471  
472 -This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
610 +[[image:image-20220723134549-8.png]]
473 473  
612 +2.Open Node-RED,And import the JSON file to generate the flow
474 474  
475 -(% style="color:red" %)**IMPORTANT NOTE: **
614 +Sample JSON file please go to this link to download:放置JSON文件的链接
476 476  
477 -(% style="color:red" %)**Note:**(%%) This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
616 +For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
478 478  
479 -—Reorient or relocate the receiving antenna.
618 +The following is the positioning effect map
480 480  
481 -—Increase the separation between the equipment and receiver.
620 +[[image:image-20220723144339-1.png]]
482 482  
483 -—Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
622 +== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
484 484  
485 -—Consult the dealer or an experienced radio/TV technician for help.
624 +The LA66 USB LoRaWAN Module is the same as the LA66 LoRaWAN Shield update method
486 486  
626 +Just use the yellow jumper cap to short the BOOT corner and the RX corner, and then press the RESET button (without the jumper cap, you can directly short the BOOT corner and the RX corner with a wire to achieve the same effect)
487 487  
488 -(% style="color:red" %)**FCC Radiation Exposure Statement: **
628 +[[image:image-20220723150132-2.png]]
489 489  
490 -This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
630 +
631 += 4.  Order Info =
632 +
633 +
634 +**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
635 +
636 +
637 +(% style="color:blue" %)**XXX**(%%): The default frequency band
638 +
639 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
640 +* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
641 +* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
642 +* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
643 +* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
644 +* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
645 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
646 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
647 +* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
648 +
649 += 5.  Reference =
650 +
651 +* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
image-20220726135239-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -91.4 KB
Content
image-20220726135356-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.6 KB
Content
image-20220813173738-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -13.2 KB
Content
image-20220813174353-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -189.1 KB
Content
image-20220813183239-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -642.4 KB
Content
image-20220814101457-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -913.4 KB
Content
image-20220817084245-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -317.6 KB
Content
image-20220817084532-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -174.9 KB
Content
image-20220817093644-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -217.0 KB
Content
image-20220909151441-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -152.4 KB
Content
image-20220909151517-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -64.3 KB
Content
image-20220912085244-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.7 KB
Content
image-20220912085307-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -16.7 KB
Content