Last modified by Xiaoling on 2025/02/07 16:37

From version 149.6
edited by Xiaoling
on 2022/08/22 16:23
Change comment: There is no comment for this version
To version 101.1
edited by Xiaoling
on 2022/07/20 11:18
Change comment: Uploaded new attachment "image-20220720111850-1.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LA66 USB LoRaWAN Adapter User Manual
1 +LA66 LoRaWAN Module
Content
... ... @@ -6,26 +6,34 @@
6 6  
7 7  
8 8  
9 += 1.  LA66 LoRaWAN Module =
9 9  
10 10  
11 -= 1.  LA66 USB LoRaWAN Adapter =
12 +== 1.1  What is LA66 LoRaWAN Module ==
12 12  
13 13  
14 -== 1.1  Overview ==
15 +(((
16 +(((
17 +[[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 +)))
15 15  
20 +(((
21 +
22 +)))
16 16  
17 -[[image:image-20220715001142-3.png||height="145" width="220"]]
18 -
19 -
20 20  (((
21 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
25 +(% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
22 22  )))
27 +)))
23 23  
24 24  (((
25 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
30 +(((
31 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
26 26  )))
33 +)))
27 27  
28 28  (((
36 +(((
29 29  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
30 30  )))
31 31  
... ... @@ -32,37 +32,37 @@
32 32  (((
33 33  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
34 34  )))
43 +)))
35 35  
36 36  (((
46 +(((
37 37  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
38 38  )))
49 +)))
39 39  
40 40  
41 41  
42 42  == 1.2  Features ==
43 43  
44 -
45 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
46 -* Ultra-long RF range
47 47  * Support LoRaWAN v1.0.4 protocol
48 48  * Support peer-to-peer protocol
49 49  * TCXO crystal to ensure RF performance on low temperature
50 -* Spring RF antenna
58 +* SMD Antenna pad and i-pex antenna connector
51 51  * Available in different frequency LoRaWAN frequency bands.
52 52  * World-wide unique OTAA keys.
53 53  * AT Command via UART-TTL interface
54 54  * Firmware upgradable via UART interface
55 -* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
63 +* Ultra-long RF range
56 56  
57 57  
58 58  
59 59  == 1.3  Specification ==
60 60  
61 -
62 62  * CPU: 32-bit 48 MHz
63 63  * Flash: 256KB
64 64  * RAM: 64KB
65 -* Input Power Range: 5v
72 +* Input Power Range: 1.8v ~~ 3.7v
73 +* Power Consumption: < 4uA.
66 66  * Frequency Range: 150 MHz ~~ 960 MHz
67 67  * Maximum Power +22 dBm constant RF output
68 68  * High sensitivity: -148 dBm
... ... @@ -74,294 +74,456 @@
74 74  ** Operating: 10 ~~ 95% (Non-Condensing)
75 75  * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
76 76  * LoRa Rx current: <9 mA
85 +* I/O Voltage: 3.3v
77 77  
78 78  
79 79  
80 -== 1.4  Pin Mapping & LED ==
89 +== 1.4  AT Command ==
81 81  
82 -[[image:image-20220813183239-3.png||height="526" width="662"]]
83 83  
92 +AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
84 84  
85 85  
86 -== 1.5  Example: Send & Get Messages via LoRaWAN in PC ==
87 87  
96 +== 1.5  Dimension ==
88 88  
98 +[[image:image-20220718094750-3.png]]
99 +
100 +
101 +
102 +== 1.6  Pin Mapping ==
103 +
104 +
105 +[[image:image-20220719093156-1.png]]
106 +
107 +
108 +
109 +== 1.7  Land Pattern ==
110 +
111 +[[image:image-20220517072821-2.png]]
112 +
113 +
114 +
115 += 2.  LA66 LoRaWAN Shield =
116 +
117 +
118 +== 2.1  Overview ==
119 +
120 +
89 89  (((
90 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
122 +[[image:image-20220715000826-2.png||height="145" width="220"]]
91 91  )))
92 92  
125 +(((
126 +
127 +)))
93 93  
94 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
129 +(((
130 +(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
131 +)))
95 95  
133 +(((
134 +(((
135 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
136 +)))
137 +)))
96 96  
97 -[[image:image-20220723100027-1.png]]
139 +(((
140 +(((
141 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
142 +)))
143 +)))
98 98  
145 +(((
146 +(((
147 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
148 +)))
149 +)))
99 99  
100 -Open the serial port tool
151 +(((
152 +(((
153 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
154 +)))
155 +)))
101 101  
102 -[[image:image-20220602161617-8.png]]
103 103  
104 -[[image:image-20220602161718-9.png||height="457" width="800"]]
105 105  
159 +== 2.2  Features ==
106 106  
161 +* Arduino Shield base on LA66 LoRaWAN module
162 +* Support LoRaWAN v1.0.4 protocol
163 +* Support peer-to-peer protocol
164 +* TCXO crystal to ensure RF performance on low temperature
165 +* SMA connector
166 +* Available in different frequency LoRaWAN frequency bands.
167 +* World-wide unique OTAA keys.
168 +* AT Command via UART-TTL interface
169 +* Firmware upgradable via UART interface
170 +* Ultra-long RF range
107 107  
108 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
109 109  
110 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
111 111  
174 +== 2.3  Specification ==
112 112  
113 -[[image:image-20220602161935-10.png||height="498" width="800"]]
176 +* CPU: 32-bit 48 MHz
177 +* Flash: 256KB
178 +* RAM: 64KB
179 +* Input Power Range: 1.8v ~~ 3.7v
180 +* Power Consumption: < 4uA.
181 +* Frequency Range: 150 MHz ~~ 960 MHz
182 +* Maximum Power +22 dBm constant RF output
183 +* High sensitivity: -148 dBm
184 +* Temperature:
185 +** Storage: -55 ~~ +125℃
186 +** Operating: -40 ~~ +85℃
187 +* Humidity:
188 +** Storage: 5 ~~ 95% (Non-Condensing)
189 +** Operating: 10 ~~ 95% (Non-Condensing)
190 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
191 +* LoRa Rx current: <9 mA
192 +* I/O Voltage: 3.3v
114 114  
115 115  
116 116  
117 -(% style="color:blue" %)**3. See Uplink Command**
196 +== 2. Pin Mapping & LED ==
118 118  
119 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
120 120  
121 -example: AT+SENDB=01,02,8,05820802581ea0a5
122 122  
123 -[[image:image-20220602162157-11.png||height="497" width="800"]]
200 +== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
124 124  
125 125  
126 126  
127 -(% style="color:blue" %)**4. Check to see if TTN received the message**
204 +== 2. Example: Join TTN network and send an uplink message, get downlink message. ==
128 128  
129 129  
130 130  
131 -[[image:image-20220817093644-1.png]]
208 +== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
132 132  
133 133  
134 134  
135 -== 1.6  Example: Send PC's CPU/RAM usage to TTN via python ==
212 +== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
136 136  
137 137  
138 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
215 +=== 2.8.1  Items needed for update ===
139 139  
140 -(**Raspberry Pi example: **[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py]])
217 +1. LA66 LoRaWAN Shield
218 +1. Arduino
219 +1. USB TO TTL Adapter
141 141  
221 +[[image:image-20220602100052-2.png||height="385" width="600"]]
142 142  
143 -(% style="color:red" %)**Preconditions:**
144 144  
145 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
224 +=== 2.8.2  Connection ===
146 146  
147 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
148 148  
227 +[[image:image-20220602101311-3.png||height="276" width="600"]]
149 149  
150 150  
151 -(% style="color:blue" %)**Steps for usage:**
230 +(((
231 +(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
232 +)))
152 152  
153 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
234 +(((
235 +(% style="background-color:yellow" %)**GND  <-> GND
236 +TXD  <->  TXD
237 +RXD  <->  RXD**
238 +)))
154 154  
155 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
156 156  
241 +Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
157 157  
158 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
243 +Connect USB TTL Adapter to PC after connecting the wires
159 159  
160 160  
246 +[[image:image-20220602102240-4.png||height="304" width="600"]]
161 161  
162 -== 1.7  Example: Send & Get Messages via LoRaWAN in RPi ==
163 163  
249 +=== 2.8.3  Upgrade steps ===
164 164  
165 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
166 166  
252 +==== 1.  Switch SW1 to put in ISP position ====
167 167  
168 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
169 169  
255 +[[image:image-20220602102824-5.png||height="306" width="600"]]
170 170  
171 -[[image:image-20220723100439-2.png]]
172 172  
173 173  
259 +==== 2.  Press the RST switch once ====
174 174  
175 -(% style="color:blue" %)**2. Install Minicom in RPi.**
176 176  
262 +[[image:image-20220602104701-12.png||height="285" width="600"]]
177 177  
178 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
179 179  
180 - (% style="background-color:yellow" %)**apt update**
181 181  
182 - (% style="background-color:yellow" %)**apt install minicom**
266 +==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
183 183  
184 184  
185 -Use minicom to connect to the RPI's terminal
269 +(((
270 +(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
271 +)))
186 186  
187 -[[image:image-20220602153146-3.png||height="439" width="500"]]
188 188  
274 +[[image:image-20220602103227-6.png]]
189 189  
190 190  
191 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
277 +[[image:image-20220602103357-7.png]]
192 192  
193 193  
194 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
195 195  
281 +(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
282 +(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
196 196  
197 -[[image:image-20220602154928-5.png||height="436" width="500"]]
198 198  
285 +[[image:image-20220602103844-8.png]]
199 199  
200 200  
201 -(% style="color:blue" %)**4. Send Uplink message**
202 202  
289 +(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
290 +(% style="color:blue" %)**3. Select the bin file to burn**
203 203  
204 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
205 205  
206 -example: AT+SENDB=01,02,8,05820802581ea0a5
293 +[[image:image-20220602104144-9.png]]
207 207  
208 208  
209 -[[image:image-20220602160339-6.png||height="517" width="600"]]
296 +[[image:image-20220602104251-10.png]]
210 210  
211 211  
299 +[[image:image-20220602104402-11.png]]
212 212  
213 -Check to see if TTN received the message
214 214  
215 -[[image:image-20220602160627-7.png||height="369" width="800"]]
216 216  
303 +(% class="wikigeneratedid" id="HClicktostartthedownload" %)
304 +(% style="color:blue" %)**4. Click to start the download**
217 217  
306 +[[image:image-20220602104923-13.png]]
218 218  
219 -== 1.8  Example: Use of LA66 USB LoRaWAN Adapter and mobile APP ==
220 220  
221 221  
222 -=== 1.8.1  Hardware and Software Connection ===
310 +(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
311 +(% style="color:blue" %)**5. Check update process**
223 223  
224 224  
314 +[[image:image-20220602104948-14.png]]
225 225  
226 -==== (% style="color:blue" %)**Overview:**(%%) ====
227 227  
228 228  
318 +(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
319 +(% style="color:blue" %)**The following picture shows that the burning is successful**
320 +
321 +[[image:image-20220602105251-15.png]]
322 +
323 +
324 +
325 += 3.  LA66 USB LoRaWAN Adapter =
326 +
327 +
328 +== 3.1  Overview ==
329 +
330 +
331 +[[image:image-20220715001142-3.png||height="145" width="220"]]
332 +
333 +
229 229  (((
230 -DRAGINO-LA66-APP is an Open Source mobile APP for LA66 USB LoRaWAN Adapter. DRAGINO-LA66-APP has below features:
335 +(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
336 +)))
231 231  
232 -* Send real-time location information of mobile phone to LoRaWAN network.
233 -* Check LoRaWAN network signal strengh.
234 -* Manually send messages to LoRaWAN network.
338 +(((
339 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
235 235  )))
236 236  
342 +(((
343 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
344 +)))
237 237  
346 +(((
347 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
348 +)))
238 238  
350 +(((
351 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
352 +)))
239 239  
240 -==== (% style="color:blue" %)**Hardware Connection:**(%%) ====
241 241  
242 242  
243 -A USB to Type-C adapter is needed to connect to a Mobile phone.
356 +== 3.2  Features ==
244 244  
245 -Note: The package of LA66 USB adapter already includes this USB Type-C adapter.
358 +* LoRaWAN USB adapter base on LA66 LoRaWAN module
359 +* Ultra-long RF range
360 +* Support LoRaWAN v1.0.4 protocol
361 +* Support peer-to-peer protocol
362 +* TCXO crystal to ensure RF performance on low temperature
363 +* Spring RF antenna
364 +* Available in different frequency LoRaWAN frequency bands.
365 +* World-wide unique OTAA keys.
366 +* AT Command via UART-TTL interface
367 +* Firmware upgradable via UART interface
368 +* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
246 246  
247 -[[image:image-20220813174353-2.png||height="360" width="313"]]
248 248  
249 249  
372 +== 3.3  Specification ==
250 250  
251 -==== (% style="color:blue" %)**Download and Install App:**(%%) ====
374 +* CPU: 32-bit 48 MHz
375 +* Flash: 256KB
376 +* RAM: 64KB
377 +* Input Power Range: 5v
378 +* Frequency Range: 150 MHz ~~ 960 MHz
379 +* Maximum Power +22 dBm constant RF output
380 +* High sensitivity: -148 dBm
381 +* Temperature:
382 +** Storage: -55 ~~ +125℃
383 +** Operating: -40 ~~ +85℃
384 +* Humidity:
385 +** Storage: 5 ~~ 95% (Non-Condensing)
386 +** Operating: 10 ~~ 95% (Non-Condensing)
387 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
388 +* LoRa Rx current: <9 mA
252 252  
253 253  
254 -[[(% id="cke_bm_895007S" style="display:none" %)** **(%%)**Download Link for Android apk **>>https://www.dropbox.com/sh/zxwx16qb777uvkz/AABE_P8coGCQ4DAC8enH4bUya?dl=0]].  (Android Version Only)
255 255  
256 -[[image:image-20220813173738-1.png]]
392 +== 3.4  Pin Mapping & LED ==
257 257  
258 258  
259 259  
260 -==== (% style="color:blue" %)**Use of APP:**(%%) ====
396 +== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
261 261  
262 262  
263 -Function and page introduction
399 +(((
400 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
401 +)))
264 264  
265 265  
266 -[[image:image-20220723113448-7.png||height="995" width="450"]]
404 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
267 267  
268 -**Block Explain:**
269 269  
270 -1.  Display LA66 USB LoRaWAN Module connection status
407 +[[image:image-20220602171217-1.png||height="538" width="800"]]
271 271  
272 -2.  Check and reconnect
273 273  
274 -3.  Turn send timestamps on or off
410 +Open the serial port tool
275 275  
276 -4.  Display LoRaWan connection status
412 +[[image:image-20220602161617-8.png]]
277 277  
278 -5.  Check LoRaWan connection status
414 +[[image:image-20220602161718-9.png||height="457" width="800"]]
279 279  
280 -6.  The RSSI value of the node when the ACK is received
281 281  
282 -7.  Node's Signal Strength Icon
283 283  
284 -8.  Configure Location Uplink Interval
418 +(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
285 285  
286 -9.  AT command input box
420 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
287 287  
288 -10.  Send Button:  Send input box info to LA66 USB Adapter
289 289  
290 -11.  Output Log from LA66 USB adapter
423 +[[image:image-20220602161935-10.png||height="498" width="800"]]
291 291  
292 -12.  clear log button
293 293  
294 -13.  exit button
295 295  
427 +(% style="color:blue" %)**3. See Uplink Command**
296 296  
429 +Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
297 297  
298 -LA66 USB LoRaWAN Module not connected
431 +example: AT+SENDB=01,02,8,05820802581ea0a5
299 299  
433 +[[image:image-20220602162157-11.png||height="497" width="800"]]
300 300  
301 -[[image:image-20220723110520-5.png||height="677" width="508"]]
302 302  
303 303  
437 +(% style="color:blue" %)**4. Check to see if TTN received the message**
304 304  
305 -Connect LA66 USB LoRaWAN Module
439 +[[image:image-20220602162331-12.png||height="420" width="800"]]
306 306  
307 -[[image:image-20220723110626-6.png||height="681" width="511"]]
308 308  
309 309  
443 +== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
310 310  
311 -=== 1.8.2  Send data to TTNv3 and plot location info in Node-Red ===
312 312  
446 +**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
313 313  
314 -(% style="color:blue" %)**1.  Register LA66 USB LoRaWAN Module to TTNV3**
315 315  
449 +(% style="color:red" %)**Preconditions:**
316 316  
317 -[[image:image-20220723134549-8.png]]
451 +(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
318 318  
453 +(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
319 319  
320 320  
321 -(% style="color:blue" %)**2.  Open Node-RED,And import the JSON file to generate the flow**
322 322  
457 +(% style="color:blue" %)**Steps for usage:**
323 323  
324 -Sample JSON file please go to **[[this link>>https://www.dropbox.com/sh/zxwx16qb777uvkz/AABE_P8coGCQ4DAC8enH4bUya?dl=0]]** to download.
459 +(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
325 325  
326 -For the usage of Node-RED, please refer to: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Node-RED/>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]]
461 +(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
327 327  
328 -After see LoRaWAN Online, walk around and the APP will keep sending location info to LoRaWAN server and then to the Node Red.
463 +[[image:image-20220602115852-3.png||height="450" width="1187"]]
329 329  
330 330  
331 -Example output in NodeRed is as below:
332 332  
333 -[[image:image-20220723144339-1.png]]
467 +== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
334 334  
335 335  
470 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
336 336  
337 -== 1.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
338 338  
473 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
339 339  
340 -The LA66 USB LoRaWAN Adapter is the same as the LA66 LoRaWAN Shield update method
475 +[[image:image-20220602171233-2.png||height="538" width="800"]]
341 341  
342 -Just use the yellow jumper cap to short the BOOT corner and the RX corner, and then press the RESET button (without the jumper cap, you can directly short the BOOT corner and the RX corner with a wire to achieve the same effect)
343 343  
344 344  
345 -[[image:image-20220723150132-2.png]]
479 +(% style="color:blue" %)**2. Install Minicom in RPi.**
346 346  
481 +(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
347 347  
483 + (% style="background-color:yellow" %)**apt update**
348 348  
349 -= 2.  FAQ =
485 + (% style="background-color:yellow" %)**apt install minicom**
350 350  
351 351  
352 -== 2.1  How to Compile Source Code for LA66? ==
488 +Use minicom to connect to the RPI's terminal
353 353  
490 +[[image:image-20220602153146-3.png||height="439" width="500"]]
354 354  
355 -Compile and Upload Code to ASR6601 Platform :[[Instruction>>Main.User Manual for LoRaWAN End Nodes.LA66 LoRaWAN Module.Compile and Upload Code to ASR6601 Platform.WebHome]]
356 356  
357 357  
494 +(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
358 358  
359 -= 3.  Order Info =
496 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
360 360  
361 361  
362 -**Part Number:**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
499 +[[image:image-20220602154928-5.png||height="436" width="500"]]
363 363  
364 364  
502 +
503 +(% style="color:blue" %)**4. Send Uplink message**
504 +
505 +Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
506 +
507 +example: AT+SENDB=01,02,8,05820802581ea0a5
508 +
509 +
510 +[[image:image-20220602160339-6.png||height="517" width="600"]]
511 +
512 +
513 +
514 +Check to see if TTN received the message
515 +
516 +[[image:image-20220602160627-7.png||height="369" width="800"]]
517 +
518 +
519 +
520 +== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
521 +
522 +
523 +
524 +== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
525 +
526 +
527 +
528 +
529 += 4.  Order Info =
530 +
531 +
532 +**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
533 +
534 +
365 365  (% style="color:blue" %)**XXX**(%%): The default frequency band
366 366  
367 367  * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
... ... @@ -375,12 +375,6 @@
375 375  * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
376 376  
377 377  
548 += 5.  Reference =
378 378  
379 -
380 -= 4.  Reference =
381 -
382 -
383 -* Hardware Design File for LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
384 -
385 -
386 -
550 +* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
image-20220723100027-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20220723100439-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -749.8 KB
Content
image-20220723102027-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -28.7 KB
Content
image-20220723104754-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -231.5 KB
Content
image-20220723110520-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -3.2 MB
Content
image-20220723110626-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -3.6 MB
Content
image-20220723113448-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -298.5 KB
Content
image-20220723134549-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -392.3 KB
Content
image-20220723144339-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -324.7 KB
Content
image-20220723150132-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -698.8 KB
Content
image-20220723165950-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -278.4 KB
Content
image-20220723170210-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -883.0 KB
Content
image-20220723170545-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20220723170750-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.0 KB
Content
image-20220723171228-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.2 KB
Content
image-20220723172235-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -262.3 KB
Content
image-20220723172502-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -112.0 KB
Content
image-20220723172938-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -104.8 KB
Content
image-20220723173341-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -117.9 KB
Content
image-20220723173950-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -121.9 KB
Content
image-20220723175700-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.4 KB
Content
image-20220726135239-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -91.4 KB
Content
image-20220726135356-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.6 KB
Content
image-20220813173738-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -13.2 KB
Content
image-20220813174353-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -189.1 KB
Content
image-20220813183239-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -642.4 KB
Content
image-20220814101457-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -913.4 KB
Content
image-20220817084245-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -317.6 KB
Content
image-20220817084532-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -174.9 KB
Content
image-20220817093644-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -217.0 KB
Content