<
From version < 100.6 >
edited by Xiaoling
on 2022/07/19 11:49
To version < 149.7 >
edited by Xiaoling
on 2022/08/22 16:24
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LA66 LoRaWAN Module
1 +LA66 USB LoRaWAN Adapter User Manual
Content
... ... @@ -6,34 +6,26 @@
6 6  
7 7  
8 8  
9 -= 1.  LA66 LoRaWAN Module =
10 10  
11 11  
12 -== 1.1  What is LA66 LoRaWAN Module ==
11 += 1.  LA66 USB LoRaWAN Adapter =
13 13  
14 14  
15 -(((
16 -(((
17 -[[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 -)))
14 +== 1.1  Overview ==
19 19  
20 -(((
21 -
22 -)))
23 23  
17 +[[image:image-20220715001142-3.png||height="145" width="220"]]
18 +
19 +
24 24  (((
25 -(% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
21 +(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
26 26  )))
27 -)))
28 28  
29 29  (((
30 -(((
31 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
25 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
32 32  )))
33 -)))
34 34  
35 35  (((
36 -(((
37 37  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
38 38  )))
39 39  
... ... @@ -40,37 +40,37 @@
40 40  (((
41 41  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
42 42  )))
43 -)))
44 44  
45 45  (((
46 -(((
47 47  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
48 48  )))
49 -)))
50 50  
51 51  
52 52  
53 53  == 1.2  Features ==
54 54  
44 +
45 +* LoRaWAN USB adapter base on LA66 LoRaWAN module
46 +* Ultra-long RF range
55 55  * Support LoRaWAN v1.0.4 protocol
56 56  * Support peer-to-peer protocol
57 57  * TCXO crystal to ensure RF performance on low temperature
58 -* SMD Antenna pad and i-pex antenna connector
50 +* Spring RF antenna
59 59  * Available in different frequency LoRaWAN frequency bands.
60 60  * World-wide unique OTAA keys.
61 61  * AT Command via UART-TTL interface
62 62  * Firmware upgradable via UART interface
63 -* Ultra-long RF range
55 +* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
64 64  
65 65  
66 66  
67 67  == 1.3  Specification ==
68 68  
61 +
69 69  * CPU: 32-bit 48 MHz
70 70  * Flash: 256KB
71 71  * RAM: 64KB
72 -* Input Power Range: 1.8v ~~ 3.7v
73 -* Power Consumption: < 4uA.
65 +* Input Power Range: 5v
74 74  * Frequency Range: 150 MHz ~~ 960 MHz
75 75  * Maximum Power +22 dBm constant RF output
76 76  * High sensitivity: -148 dBm
... ... @@ -82,456 +82,296 @@
82 82  ** Operating: 10 ~~ 95% (Non-Condensing)
83 83  * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
84 84  * LoRa Rx current: <9 mA
85 -* I/O Voltage: 3.3v
86 86  
87 87  
88 88  
89 -== 1.4  AT Command ==
80 +== 1.4  Pin Mapping & LED ==
90 90  
91 91  
92 -AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
83 +[[image:image-20220813183239-3.png||height="526" width="662"]]
93 93  
94 94  
95 95  
96 -== 1.5  Dimension ==
87 +== 1.5  Example: Send & Get Messages via LoRaWAN in PC ==
97 97  
98 -[[image:image-20220718094750-3.png]]
99 99  
100 -
101 -
102 -== 1.6  Pin Mapping ==
103 -
104 -
105 -[[image:image-20220719093156-1.png]]
106 -
107 -
108 -
109 -== 1.7  Land Pattern ==
110 -
111 -[[image:image-20220517072821-2.png]]
112 -
113 -
114 -
115 -= 2.  LA66 LoRaWAN Shield =
116 -
117 -
118 -== 2.1  Overview ==
119 -
120 -
121 121  (((
122 -[[image:image-20220715000826-2.png||height="145" width="220"]]
91 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
123 123  )))
124 124  
125 -(((
126 -
127 -)))
128 128  
129 -(((
130 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
131 -)))
95 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
132 132  
133 -(((
134 -(((
135 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
136 -)))
137 -)))
138 138  
139 -(((
140 -(((
141 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
142 -)))
143 -)))
98 +[[image:image-20220723100027-1.png]]
144 144  
145 -(((
146 -(((
147 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
148 -)))
149 -)))
150 150  
151 -(((
152 -(((
153 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
154 -)))
155 -)))
101 +Open the serial port tool
156 156  
103 +[[image:image-20220602161617-8.png]]
157 157  
105 +[[image:image-20220602161718-9.png||height="457" width="800"]]
158 158  
159 -== 2.2  Features ==
160 160  
161 -* Arduino Shield base on LA66 LoRaWAN module
162 -* Support LoRaWAN v1.0.4 protocol
163 -* Support peer-to-peer protocol
164 -* TCXO crystal to ensure RF performance on low temperature
165 -* SMA connector
166 -* Available in different frequency LoRaWAN frequency bands.
167 -* World-wide unique OTAA keys.
168 -* AT Command via UART-TTL interface
169 -* Firmware upgradable via UART interface
170 -* Ultra-long RF range
171 171  
109 +(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
172 172  
173 173  
174 -== 2.3  Specification ==
112 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
175 175  
176 -* CPU: 32-bit 48 MHz
177 -* Flash: 256KB
178 -* RAM: 64KB
179 -* Input Power Range: 1.8v ~~ 3.7v
180 -* Power Consumption: < 4uA.
181 -* Frequency Range: 150 MHz ~~ 960 MHz
182 -* Maximum Power +22 dBm constant RF output
183 -* High sensitivity: -148 dBm
184 -* Temperature:
185 -** Storage: -55 ~~ +125℃
186 -** Operating: -40 ~~ +85℃
187 -* Humidity:
188 -** Storage: 5 ~~ 95% (Non-Condensing)
189 -** Operating: 10 ~~ 95% (Non-Condensing)
190 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
191 -* LoRa Rx current: <9 mA
192 -* I/O Voltage: 3.3v
193 193  
115 +[[image:image-20220602161935-10.png||height="498" width="800"]]
194 194  
195 195  
196 -== 2.4  Pin Mapping & LED ==
197 197  
119 +(% style="color:blue" %)**3. See Uplink Command**
198 198  
199 199  
200 -== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
122 +Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
201 201  
124 +example: AT+SENDB=01,02,8,05820802581ea0a5
202 202  
126 +[[image:image-20220602162157-11.png||height="497" width="800"]]
203 203  
204 -== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
205 205  
206 206  
130 +(% style="color:blue" %)**4. Check to see if TTN received the message**
207 207  
208 -== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
209 209  
133 +[[image:image-20220817093644-1.png]]
210 210  
211 211  
212 -== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
213 213  
137 +== 1.6  Example: Send PC's CPU/RAM usage to TTN via python ==
214 214  
215 -=== 2.8.1  Items needed for update ===
216 216  
217 -1. LA66 LoRaWAN Shield
218 -1. Arduino
219 -1. USB TO TTL Adapter
140 +**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
220 220  
221 -[[image:image-20220602100052-2.png||height="385" width="600"]]
142 +(**Raspberry Pi example: **[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py]])
222 222  
223 223  
224 -=== 2.8.2  Connection ===
145 +(% style="color:red" %)**Preconditions:**
225 225  
147 +(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
226 226  
227 -[[image:image-20220602101311-3.png||height="276" width="600"]]
149 +(% style="color:red" %)**2. LA66 USB LoRaWAN Adapteis registered with TTN**
228 228  
229 229  
230 -(((
231 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
232 -)))
233 233  
234 -(((
235 -(% style="background-color:yellow" %)**GND  <-> GND
236 -TXD  <->  TXD
237 -RXD  <->  RXD**
238 -)))
153 +(% style="color:blue" %)**Steps for usage:**
239 239  
155 +(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
240 240  
241 -Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
157 +(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
242 242  
243 -Connect USB TTL Adapter to PC after connecting the wires
244 244  
160 +[[image:image-20220602115852-3.png||height="450" width="1187"]]
245 245  
246 -[[image:image-20220602102240-4.png||height="304" width="600"]]
247 247  
248 248  
249 -=== 2.8.3  Upgrade steps ===
164 +== 1.7  Example: Send & Get Messages via LoRaWAN in RPi ==
250 250  
251 251  
252 -==== 1.  Switch SW1 to put in ISP position ====
167 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
253 253  
254 254  
255 -[[image:image-20220602102824-5.png||height="306" width="600"]]
170 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
256 256  
257 257  
173 +[[image:image-20220723100439-2.png]]
258 258  
259 -==== 2.  Press the RST switch once ====
260 260  
261 261  
262 -[[image:image-20220602104701-12.png||height="285" width="600"]]
177 +(% style="color:blue" %)**2. Install Minicom in RPi.**
263 263  
264 264  
180 +(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
265 265  
266 -==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
182 + (% style="background-color:yellow" %)**apt update**
267 267  
184 + (% style="background-color:yellow" %)**apt install minicom**
268 268  
269 -(((
270 -(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
271 -)))
272 272  
187 +Use minicom to connect to the RPI's terminal
273 273  
274 -[[image:image-20220602103227-6.png]]
189 +[[image:image-20220602153146-3.png||height="439" width="500"]]
275 275  
276 276  
277 -[[image:image-20220602103357-7.png]]
278 278  
193 +(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
279 279  
280 280  
281 -(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
282 -(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
196 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
283 283  
284 284  
285 -[[image:image-20220602103844-8.png]]
199 +[[image:image-20220602154928-5.png||height="436" width="500"]]
286 286  
287 287  
288 288  
289 -(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
290 -(% style="color:blue" %)**3. Select the bin file to burn**
203 +(% style="color:blue" %)**4. Send Uplink message**
291 291  
292 292  
293 -[[image:image-20220602104144-9.png]]
206 +Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
294 294  
208 +example: AT+SENDB=01,02,8,05820802581ea0a5
295 295  
296 -[[image:image-20220602104251-10.png]]
297 297  
211 +[[image:image-20220602160339-6.png||height="517" width="600"]]
298 298  
299 -[[image:image-20220602104402-11.png]]
300 300  
301 301  
215 +Check to see if TTN received the message
302 302  
303 -(% class="wikigeneratedid" id="HClicktostartthedownload" %)
304 -(% style="color:blue" %)**4. Click to start the download**
217 +[[image:image-20220602160627-7.png||height="369" width="800"]]
305 305  
306 -[[image:image-20220602104923-13.png]]
307 307  
308 308  
221 +== 1.8  Example: Use of LA66 USB LoRaWAN Adapter and mobile APP ==
309 309  
310 -(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
311 -(% style="color:blue" %)**5. Check update process**
312 312  
224 +=== 1.8.1  Hardware and Software Connection ===
313 313  
314 -[[image:image-20220602104948-14.png]]
315 315  
316 316  
228 +==== (% style="color:blue" %)**Overview:**(%%) ====
317 317  
318 -(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
319 -(% style="color:blue" %)**The following picture shows that the burning is successful**
320 320  
321 -[[image:image-20220602105251-15.png]]
322 -
323 -
324 -
325 -= 3.  LA66 USB LoRaWAN Adapter =
326 -
327 -
328 -== 3.1  Overview ==
329 -
330 -
331 -[[image:image-20220715001142-3.png||height="145" width="220"]]
332 -
333 -
334 334  (((
335 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
336 -)))
232 +DRAGINO-LA66-APP is an Open Source mobile APP for LA66 USB LoRaWAN Adapter. DRAGINO-LA66-APP has below features:
337 337  
338 -(((
339 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
234 +* Send real-time location information of mobile phone to LoRaWAN network.
235 +* Check LoRaWAN network signal strengh.
236 +* Manually send messages to LoRaWAN network.
340 340  )))
341 341  
342 -(((
343 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
344 -)))
345 345  
346 -(((
347 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
348 -)))
349 349  
350 -(((
351 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
352 -)))
353 353  
242 +==== (% style="color:blue" %)**Hardware Connection:**(%%) ====
354 354  
355 355  
356 -== 3.2  Features ==
245 +A USB to Type-C adapter is needed to connect to a Mobile phone.
357 357  
358 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
359 -* Ultra-long RF range
360 -* Support LoRaWAN v1.0.4 protocol
361 -* Support peer-to-peer protocol
362 -* TCXO crystal to ensure RF performance on low temperature
363 -* Spring RF antenna
364 -* Available in different frequency LoRaWAN frequency bands.
365 -* World-wide unique OTAA keys.
366 -* AT Command via UART-TTL interface
367 -* Firmware upgradable via UART interface
368 -* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
247 +Note: The package of LA66 USB adapter already includes this USB Type-C adapter.
369 369  
249 +[[image:image-20220813174353-2.png||height="360" width="313"]]
370 370  
371 371  
372 -== 3.3  Specification ==
373 373  
374 -* CPU: 32-bit 48 MHz
375 -* Flash: 256KB
376 -* RAM: 64KB
377 -* Input Power Range: 5v
378 -* Frequency Range: 150 MHz ~~ 960 MHz
379 -* Maximum Power +22 dBm constant RF output
380 -* High sensitivity: -148 dBm
381 -* Temperature:
382 -** Storage: -55 ~~ +125℃
383 -** Operating: -40 ~~ +85℃
384 -* Humidity:
385 -** Storage: 5 ~~ 95% (Non-Condensing)
386 -** Operating: 10 ~~ 95% (Non-Condensing)
387 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
388 -* LoRa Rx current: <9 mA
253 +==== (% style="color:blue" %)**Download and Install App:**(%%) ====
389 389  
390 390  
256 +[[(% id="cke_bm_895007S" style="display:none" %)** **(%%)**Download Link for Android apk **>>https://www.dropbox.com/sh/zxwx16qb777uvkz/AABE_P8coGCQ4DAC8enH4bUya?dl=0]].  (Android Version Only)
391 391  
392 -== 3.4  Pin Mapping & LED ==
258 +[[image:image-20220813173738-1.png]]
393 393  
394 394  
395 395  
396 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
262 +==== (% style="color:blue" %)**Use of APP:**(%%) ====
397 397  
398 398  
399 -(((
400 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
401 -)))
265 +Function and page introduction
402 402  
403 403  
404 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
268 +[[image:image-20220723113448-7.png||height="995" width="450"]]
405 405  
270 +**Block Explain:**
406 406  
407 -[[image:image-20220602171217-1.png||height="538" width="800"]]
272 +1.  Display LA66 USB LoRaWAN Module connection status
408 408  
274 +2.  Check and reconnect
409 409  
410 -Open the serial port tool
276 +3.  Turn send timestamps on or off
411 411  
412 -[[image:image-20220602161617-8.png]]
278 +4.  Display LoRaWan connection status
413 413  
414 -[[image:image-20220602161718-9.png||height="457" width="800"]]
280 +5.  Check LoRaWan connection status
415 415  
282 +6.  The RSSI value of the node when the ACK is received
416 416  
284 +7.  Node's Signal Strength Icon
417 417  
418 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
286 +8.  Configure Location Uplink Interval
419 419  
420 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
288 +9.  AT command input box
421 421  
290 +10.  Send Button:  Send input box info to LA66 USB Adapter
422 422  
423 -[[image:image-20220602161935-10.png||height="498" width="800"]]
292 +11.  Output Log from LA66 USB adapter
424 424  
294 +12.  clear log button
425 425  
296 +13.  exit button
426 426  
427 -(% style="color:blue" %)**3. See Uplink Command**
428 428  
429 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
430 430  
431 -example: AT+SENDB=01,02,8,05820802581ea0a5
300 +LA66 USB LoRaWAN Module not connected
432 432  
433 -[[image:image-20220602162157-11.png||height="497" width="800"]]
434 434  
303 +[[image:image-20220723110520-5.png||height="677" width="508"]]
435 435  
436 436  
437 -(% style="color:blue" %)**4. Check to see if TTN received the message**
438 438  
439 -[[image:image-20220602162331-12.png||height="420" width="800"]]
307 +Connect LA66 USB LoRaWAN Module
440 440  
309 +[[image:image-20220723110626-6.png||height="681" width="511"]]
441 441  
442 442  
443 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
444 444  
313 +=== 1.8.2  Send data to TTNv3 and plot location info in Node-Red ===
445 445  
446 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
447 447  
316 +(% style="color:blue" %)**1.  Register LA66 USB LoRaWAN Module to TTNV3**
448 448  
449 -(% style="color:red" %)**Preconditions:**
450 450  
451 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
319 +[[image:image-20220723134549-8.png]]
452 452  
453 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
454 454  
455 455  
323 +(% style="color:blue" %)**2.  Open Node-RED,And import the JSON file to generate the flow**
456 456  
457 -(% style="color:blue" %)**Steps for usage:**
458 458  
459 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
326 +Sample JSON file please go to **[[this link>>https://www.dropbox.com/sh/zxwx16qb777uvkz/AABE_P8coGCQ4DAC8enH4bUya?dl=0]]** to download.
460 460  
461 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
328 +For the usage of Node-RED, please refer to: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Node-RED/>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]]
462 462  
463 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
330 +After see LoRaWAN Online, walk around and the APP will keep sending location info to LoRaWAN server and then to the Node Red.
464 464  
465 465  
333 +Example output in NodeRed is as below:
466 466  
467 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
335 +[[image:image-20220723144339-1.png]]
468 468  
469 469  
470 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
471 471  
339 +== 1.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
472 472  
473 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
474 474  
475 -[[image:image-20220602171233-2.png||height="538" width="800"]]
342 +The LA66 USB LoRaWAN Adapter is the same as the LA66 LoRaWAN Shield update method
476 476  
344 +Just use the yellow jumper cap to short the BOOT corner and the RX corner, and then press the RESET button (without the jumper cap, you can directly short the BOOT corner and the RX corner with a wire to achieve the same effect)
477 477  
478 478  
479 -(% style="color:blue" %)**2. Install Minicom in RPi.**
347 +[[image:image-20220723150132-2.png]]
480 480  
481 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
482 482  
483 - (% style="background-color:yellow" %)**apt update**
484 484  
485 - (% style="background-color:yellow" %)**apt install minicom**
351 += 2.  FAQ =
486 486  
487 487  
488 -Use minicom to connect to the RPI's terminal
354 +== 2.1  How to Compile Source Code for LA66? ==
489 489  
490 -[[image:image-20220602153146-3.png||height="439" width="500"]]
491 491  
357 +Compile and Upload Code to ASR6601 Platform :[[Instruction>>Main.User Manual for LoRaWAN End Nodes.LA66 LoRaWAN Module.Compile and Upload Code to ASR6601 Platform.WebHome]]
492 492  
493 493  
494 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
495 495  
496 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
361 += 3.  Order Info =
497 497  
498 498  
499 -[[image:image-20220602154928-5.png||height="436" width="500"]]
364 +**Part Number:**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
500 500  
501 501  
502 -
503 -(% style="color:blue" %)**4. Send Uplink message**
504 -
505 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
506 -
507 -example: AT+SENDB=01,02,8,05820802581ea0a5
508 -
509 -
510 -[[image:image-20220602160339-6.png||height="517" width="600"]]
511 -
512 -
513 -
514 -Check to see if TTN received the message
515 -
516 -[[image:image-20220602160627-7.png||height="369" width="800"]]
517 -
518 -
519 -
520 -== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
521 -
522 -
523 -
524 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
525 -
526 -
527 -
528 -
529 -= 4.  Order Info =
530 -
531 -
532 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
533 -
534 -
535 535  (% style="color:blue" %)**XXX**(%%): The default frequency band
536 536  
537 537  * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
... ... @@ -545,6 +545,12 @@
545 545  * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
546 546  
547 547  
548 -= 5.  Reference =
549 549  
550 -* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
381 +
382 += 4.  Reference =
383 +
384 +
385 +* Hardware Design File for LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
386 +
387 +
388 +
image-20220720111850-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +380.3 KB
Content
image-20220723100027-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20220723100439-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +749.8 KB
Content
image-20220723102027-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220723104754-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +231.5 KB
Content
image-20220723110520-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +3.2 MB
Content
image-20220723110626-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +3.6 MB
Content
image-20220723113448-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +298.5 KB
Content
image-20220723134549-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +392.3 KB
Content
image-20220723144339-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +324.7 KB
Content
image-20220723150132-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +698.8 KB
Content
image-20220723165950-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +278.4 KB
Content
image-20220723170210-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +883.0 KB
Content
image-20220723170545-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20220723170750-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.0 KB
Content
image-20220723171228-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.2 KB
Content
image-20220723172235-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +262.3 KB
Content
image-20220723172502-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +112.0 KB
Content
image-20220723172938-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +104.8 KB
Content
image-20220723173341-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.9 KB
Content
image-20220723173950-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +121.9 KB
Content
image-20220723175700-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.4 KB
Content
image-20220726135239-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +91.4 KB
Content
image-20220726135356-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.6 KB
Content
image-20220813173738-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +13.2 KB
Content
image-20220813174353-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +189.1 KB
Content
image-20220813183239-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +642.4 KB
Content
image-20220814101457-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +913.4 KB
Content
image-20220817084245-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +317.6 KB
Content
image-20220817084532-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +174.9 KB
Content
image-20220817093644-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +217.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0