<
From version < 100.3 >
edited by Xiaoling
on 2022/07/19 11:41
To version < 150.1 >
edited by Edwin Chen
on 2022/08/30 19:09
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LA66 LoRaWAN Module
1 +LA66 USB LoRaWAN Adapter User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -6,34 +6,26 @@
6 6  
7 7  
8 8  
9 -= 1.  LA66 LoRaWAN Module =
10 10  
11 11  
12 -== 1.1  What is LA66 LoRaWAN Module ==
11 += 1.  LA66 USB LoRaWAN Adapter =
13 13  
14 14  
15 -(((
16 -(((
17 -[[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 -)))
14 +== 1.1  Overview ==
19 19  
20 -(((
21 -
22 -)))
23 23  
17 +[[image:image-20220715001142-3.png||height="145" width="220"]]
18 +
19 +
24 24  (((
25 -(% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
21 +(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
26 26  )))
27 -)))
28 28  
29 29  (((
30 -(((
31 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
25 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
32 32  )))
33 -)))
34 34  
35 35  (((
36 -(((
37 37  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
38 38  )))
39 39  
... ... @@ -40,37 +40,36 @@
40 40  (((
41 41  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
42 42  )))
43 -)))
44 44  
45 45  (((
46 -(((
47 47  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
48 48  )))
49 -)))
50 50  
51 51  
52 52  
53 53  == 1.2  Features ==
54 54  
44 +
45 +* LoRaWAN USB adapter base on LA66 LoRaWAN module
46 +* Ultra-long RF range
55 55  * Support LoRaWAN v1.0.4 protocol
56 56  * Support peer-to-peer protocol
57 57  * TCXO crystal to ensure RF performance on low temperature
58 -* SMD Antenna pad and i-pex antenna connector
50 +* Spring RF antenna
59 59  * Available in different frequency LoRaWAN frequency bands.
60 60  * World-wide unique OTAA keys.
61 61  * AT Command via UART-TTL interface
62 62  * Firmware upgradable via UART interface
63 -* Ultra-long RF range
55 +* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
64 64  
65 65  
66 -
67 67  == 1.3  Specification ==
68 68  
60 +
69 69  * CPU: 32-bit 48 MHz
70 70  * Flash: 256KB
71 71  * RAM: 64KB
72 -* Input Power Range: 1.8v ~~ 3.7v
73 -* Power Consumption: < 4uA.
64 +* Input Power Range: 5v
74 74  * Frequency Range: 150 MHz ~~ 960 MHz
75 75  * Maximum Power +22 dBm constant RF output
76 76  * High sensitivity: -148 dBm
... ... @@ -82,447 +82,295 @@
82 82  ** Operating: 10 ~~ 95% (Non-Condensing)
83 83  * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
84 84  * LoRa Rx current: <9 mA
85 -* I/O Voltage: 3.3v
86 86  
87 87  
78 +== 1.4  Pin Mapping & LED ==
88 88  
89 -== 1.4  AT Command ==
90 90  
81 +[[image:image-20220813183239-3.png||height="526" width="662"]]
91 91  
92 -AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
93 93  
94 94  
85 +== 1.5  Example: Send & Get Messages via LoRaWAN in PC ==
95 95  
96 -== 1.5  Dimension ==
97 97  
98 -[[image:image-20220718094750-3.png]]
99 -
100 -
101 -
102 -
103 -== 1.6  Pin Mapping ==
104 -
105 -
106 -[[image:image-20220719093156-1.png]]
107 -
108 -
109 -
110 -== 1.7  Land Pattern ==
111 -
112 -[[image:image-20220517072821-2.png]]
113 -
114 -
115 -
116 -= 2.  LA66 LoRaWAN Shield =
117 -
118 -
119 -== 2.1  Overview ==
120 -
121 -
122 122  (((
123 -[[image:image-20220715000826-2.png||height="145" width="220"]]
89 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
124 124  )))
125 125  
126 -(((
127 -
128 -)))
129 129  
130 -(((
131 -LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
132 -)))
93 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
133 133  
134 -(((
135 -(((
136 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
137 -)))
138 -)))
139 139  
140 -(((
141 -(((
142 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
143 -)))
144 -)))
96 +[[image:image-20220723100027-1.png]]
145 145  
146 -(((
147 -(((
148 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
149 -)))
150 -)))
151 151  
152 -(((
153 -(((
154 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
155 -)))
156 -)))
99 +Open the serial port tool
157 157  
101 +[[image:image-20220602161617-8.png]]
158 158  
103 +[[image:image-20220602161718-9.png||height="457" width="800"]]
159 159  
160 -== 2.2  Features ==
161 161  
162 -* Arduino Shield base on LA66 LoRaWAN module
163 -* Support LoRaWAN v1.0.4 protocol
164 -* Support peer-to-peer protocol
165 -* TCXO crystal to ensure RF performance on low temperature
166 -* SMA connector
167 -* Available in different frequency LoRaWAN frequency bands.
168 -* World-wide unique OTAA keys.
169 -* AT Command via UART-TTL interface
170 -* Firmware upgradable via UART interface
171 -* Ultra-long RF range
172 172  
107 +(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
173 173  
174 174  
175 -== 2.3  Specification ==
110 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
176 176  
177 -* CPU: 32-bit 48 MHz
178 -* Flash: 256KB
179 -* RAM: 64KB
180 -* Input Power Range: 1.8v ~~ 3.7v
181 -* Power Consumption: < 4uA.
182 -* Frequency Range: 150 MHz ~~ 960 MHz
183 -* Maximum Power +22 dBm constant RF output
184 -* High sensitivity: -148 dBm
185 -* Temperature:
186 -** Storage: -55 ~~ +125℃
187 -** Operating: -40 ~~ +85℃
188 -* Humidity:
189 -** Storage: 5 ~~ 95% (Non-Condensing)
190 -** Operating: 10 ~~ 95% (Non-Condensing)
191 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
192 -* LoRa Rx current: <9 mA
193 -* I/O Voltage: 3.3v
194 194  
113 +[[image:image-20220602161935-10.png||height="498" width="800"]]
195 195  
196 196  
197 -== 2.4  Pin Mapping & LED ==
198 198  
117 +(% style="color:blue" %)**3. See Uplink Command**
199 199  
200 200  
201 -== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
120 +Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
202 202  
122 +example: AT+SENDB=01,02,8,05820802581ea0a5
203 203  
124 +[[image:image-20220602162157-11.png||height="497" width="800"]]
204 204  
205 -== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
206 206  
207 207  
128 +(% style="color:blue" %)**4. Check to see if TTN received the message**
208 208  
209 -== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
210 210  
131 +[[image:image-20220817093644-1.png]]
211 211  
212 212  
213 -== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
214 214  
135 +== 1.6  Example: Send PC's CPU/RAM usage to TTN via python ==
215 215  
216 -=== 2.8.1  Items needed for update ===
217 217  
218 -1. LA66 LoRaWAN Shield
219 -1. Arduino
220 -1. USB TO TTL Adapter
138 +**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
221 221  
140 +(**Raspberry Pi example: **[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py]])
222 222  
223 223  
224 -[[image:image-20220602100052-2.png||height="385" width="600"]]
143 +(% style="color:red" %)**Preconditions:**
225 225  
145 +(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
226 226  
227 -=== 2.8.2  Connection ===
147 +(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
228 228  
229 229  
230 -[[image:image-20220602101311-3.png||height="276" width="600"]]
231 231  
151 +(% style="color:blue" %)**Steps for usage:**
232 232  
233 -(((
234 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
235 -)))
153 +(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
236 236  
237 -(((
238 -(% style="background-color:yellow" %)**GND  <-> GND
239 -TXD  <->  TXD
240 -RXD  <->  RXD**
241 -)))
155 +(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
242 242  
243 243  
244 -Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
158 +[[image:image-20220602115852-3.png||height="450" width="1187"]]
245 245  
246 -Connect USB TTL Adapter to PC after connecting the wires
247 247  
248 248  
249 -[[image:image-20220602102240-4.png||height="304" width="600"]]
162 +== 1.7  Example: Send & Get Messages via LoRaWAN in RPi ==
250 250  
251 251  
252 -=== 2.8.3  Upgrade steps ===
165 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
253 253  
254 254  
255 -==== 1.  Switch SW1 to put in ISP position ====
168 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
256 256  
257 257  
258 -[[image:image-20220602102824-5.png||height="306" width="600"]]
171 +[[image:image-20220723100439-2.png]]
259 259  
260 260  
261 261  
262 -==== 2.  Press the RST switch once ====
175 +(% style="color:blue" %)**2. Install Minicom in RPi.**
263 263  
264 264  
265 -[[image:image-20220602104701-12.png||height="285" width="600"]]
178 +(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
266 266  
180 + (% style="background-color:yellow" %)**apt update**
267 267  
182 + (% style="background-color:yellow" %)**apt install minicom**
268 268  
269 -==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
270 270  
185 +Use minicom to connect to the RPI's terminal
271 271  
272 -(((
273 -(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
274 -)))
187 +[[image:image-20220602153146-3.png||height="439" width="500"]]
275 275  
276 276  
277 -[[image:image-20220602103227-6.png]]
278 278  
191 +(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
279 279  
280 -[[image:image-20220602103357-7.png]]
281 281  
194 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
282 282  
283 283  
284 -(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
285 -(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
197 +[[image:image-20220602154928-5.png||height="436" width="500"]]
286 286  
287 287  
288 -[[image:image-20220602103844-8.png]]
289 289  
201 +(% style="color:blue" %)**4. Send Uplink message**
290 290  
291 291  
292 -(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
293 -(% style="color:blue" %)**3. Select the bin file to burn**
204 +Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
294 294  
206 +example: AT+SENDB=01,02,8,05820802581ea0a5
295 295  
296 -[[image:image-20220602104144-9.png]]
297 297  
209 +[[image:image-20220602160339-6.png||height="517" width="600"]]
298 298  
299 -[[image:image-20220602104251-10.png]]
300 300  
301 301  
302 -[[image:image-20220602104402-11.png]]
213 +Check to see if TTN received the message
303 303  
215 +[[image:image-20220602160627-7.png||height="369" width="800"]]
304 304  
305 305  
306 -(% class="wikigeneratedid" id="HClicktostartthedownload" %)
307 -(% style="color:blue" %)**4. Click to start the download**
308 308  
309 -[[image:image-20220602104923-13.png]]
219 +== 1.8  Example: Use of LA66 USB LoRaWAN Adapter and mobile APP ==
310 310  
311 311  
222 +=== 1.8.1  Hardware and Software Connection ===
312 312  
313 -(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
314 -(% style="color:blue" %)**5. Check update process**
315 315  
316 316  
317 -[[image:image-20220602104948-14.png]]
226 +==== (% style="color:blue" %)**Overview:**(%%) ====
318 318  
319 319  
229 +(((
230 +DRAGINO-LA66-APP is an Open Source mobile APP for LA66 USB LoRaWAN Adapter. DRAGINO-LA66-APP has below features:
320 320  
321 -(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
322 -(% style="color:blue" %)**The following picture shows that the burning is successful**
232 +* Send real-time location information of mobile phone to LoRaWAN network.
233 +* Check LoRaWAN network signal strengh.
234 +* Manually send messages to LoRaWAN network.
235 +)))
323 323  
324 -[[image:image-20220602105251-15.png]]
325 325  
326 326  
327 327  
328 -= 3.  LA66 USB LoRaWAN Adapter =
240 +==== (% style="color:blue" %)**Hardware Connection:**(%%) ====
329 329  
330 330  
331 -== 3.1  Overview ==
243 +A USB to Type-C adapter is needed to connect to a Mobile phone.
332 332  
245 +Note: The package of LA66 USB adapter already includes this USB Type-C adapter.
333 333  
334 -[[image:image-20220715001142-3.png||height="145" width="220"]]
247 +[[image:image-20220813174353-2.png||height="360" width="313"]]
335 335  
336 336  
337 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
338 338  
339 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
251 +==== (% style="color:blue" %)**Download and Install App:**(%%) ====
340 340  
341 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
342 342  
343 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
254 +[[(% id="cke_bm_895007S" style="display:none" %)** **(%%)**Download Link for Android apk **>>https://www.dropbox.com/sh/zxwx16qb777uvkz/AABE_P8coGCQ4DAC8enH4bUya?dl=0]].  (Android Version Only)
344 344  
345 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
256 +[[image:image-20220813173738-1.png]]
346 346  
347 347  
348 348  
349 -== 3.2  Features ==
260 +==== (% style="color:blue" %)**Use of APP:**(%%) ====
350 350  
351 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
352 -* Ultra-long RF range
353 -* Support LoRaWAN v1.0.4 protocol
354 -* Support peer-to-peer protocol
355 -* TCXO crystal to ensure RF performance on low temperature
356 -* Spring RF antenna
357 -* Available in different frequency LoRaWAN frequency bands.
358 -* World-wide unique OTAA keys.
359 -* AT Command via UART-TTL interface
360 -* Firmware upgradable via UART interface
361 -* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
362 362  
263 +Function and page introduction
363 363  
364 364  
365 -== 3.3  Specification ==
266 +[[image:image-20220723113448-7.png||height="995" width="450"]]
366 366  
367 -* CPU: 32-bit 48 MHz
368 -* Flash: 256KB
369 -* RAM: 64KB
370 -* Input Power Range: 5v
371 -* Frequency Range: 150 MHz ~~ 960 MHz
372 -* Maximum Power +22 dBm constant RF output
373 -* High sensitivity: -148 dBm
374 -* Temperature:
375 -** Storage: -55 ~~ +125℃
376 -** Operating: -40 ~~ +85℃
377 -* Humidity:
378 -** Storage: 5 ~~ 95% (Non-Condensing)
379 -** Operating: 10 ~~ 95% (Non-Condensing)
380 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
381 -* LoRa Rx current: <9 mA
268 +**Block Explain:**
382 382  
270 +1.  Display LA66 USB LoRaWAN Module connection status
383 383  
272 +2.  Check and reconnect
384 384  
385 -== 3.4  Pin Mapping & LED ==
274 +3.  Turn send timestamps on or off
386 386  
276 +4.  Display LoRaWan connection status
387 387  
278 +5.  Check LoRaWan connection status
388 388  
389 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
280 +6The RSSI value of the node when the ACK is received
390 390  
282 +7.  Node's Signal Strength Icon
391 391  
392 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
284 +8.  Configure Location Uplink Interval
393 393  
286 +9.  AT command input box
394 394  
395 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
288 +10.  Send Button:  Send input box info to LA66 USB Adapter
396 396  
290 +11.  Output Log from LA66 USB adapter
397 397  
398 -[[image:image-20220602171217-1.png||height="538" width="800"]]
292 +12.  clear log button
399 399  
294 +13.  exit button
400 400  
401 -Open the serial port tool
402 402  
403 -[[image:image-20220602161617-8.png]]
404 404  
405 -[[image:image-20220602161718-9.png||height="457" width="800"]]
298 +LA66 USB LoRaWAN Module not connected
406 406  
407 407  
301 +[[image:image-20220723110520-5.png||height="677" width="508"]]
408 408  
409 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
410 410  
411 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
412 412  
305 +Connect LA66 USB LoRaWAN Module
413 413  
414 -[[image:image-20220602161935-10.png||height="498" width="800"]]
307 +[[image:image-20220723110626-6.png||height="681" width="511"]]
415 415  
416 416  
417 417  
418 -(% style="color:blue" %)**3. See Uplink Command**
311 +=== 1.8.2  Send data to TTNv3 and plot location info in Node-Red ===
419 419  
420 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
421 421  
422 -example: AT+SENDB=01,02,8,05820802581ea0a5
314 +(% style="color:blue" %)**1.  Register LA66 USB LoRaWAN Module to TTNV3**
423 423  
424 -[[image:image-20220602162157-11.png||height="497" width="800"]]
425 425  
317 +[[image:image-20220723134549-8.png]]
426 426  
427 427  
428 -(% style="color:blue" %)**4. Check to see if TTN received the message**
429 429  
430 -[[image:image-20220602162331-12.png||height="420" width="800"]]
321 +(% style="color:blue" %)**2.  Open Node-RED,And import the JSON file to generate the flow**
431 431  
432 432  
324 +Sample JSON file please go to **[[this link>>https://www.dropbox.com/sh/zxwx16qb777uvkz/AABE_P8coGCQ4DAC8enH4bUya?dl=0]]** to download.
433 433  
434 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
326 +For the usage of Node-RED, please refer to: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Node-RED/>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]]
435 435  
328 +After see LoRaWAN Online, walk around and the APP will keep sending location info to LoRaWAN server and then to the Node Red.
436 436  
437 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
438 438  
331 +Example output in NodeRed is as below:
439 439  
440 -(% style="color:red" %)**Preconditions:**
333 +[[image:image-20220723144339-1.png]]
441 441  
442 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
443 443  
444 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
445 445  
337 +== 1.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
446 446  
447 447  
448 -(% style="color:blue" %)**Steps for usage:**
340 +The LA66 USB LoRaWAN Adapter is the same as the LA66 LoRaWAN Shield update method
449 449  
450 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
342 +Just use the yellow jumper cap to short the BOOT corner and the RX corner, and then press the RESET button (without the jumper cap, you can directly short the BOOT corner and the RX corner with a wire to achieve the same effect)
451 451  
452 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
453 453  
454 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
345 +[[image:image-20220723150132-2.png]]
455 455  
456 456  
457 457  
458 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
349 += 2FAQ =
459 459  
460 460  
461 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
352 +== 2.1  How to Compile Source Code for LA66? ==
462 462  
463 463  
464 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
355 +Compile and Upload Code to ASR6601 Platform :[[Instruction>>Main.User Manual for LoRaWAN End Nodes.LA66 LoRaWAN Module.Compile and Upload Code to ASR6601 Platform.WebHome]]
465 465  
466 -[[image:image-20220602171233-2.png||height="538" width="800"]]
467 467  
468 468  
359 += 3.  Order Info =
469 469  
470 -(% style="color:blue" %)**2. Install Minicom in RPi.**
471 471  
472 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
362 +**Part Number:**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
473 473  
474 - (% style="background-color:yellow" %)**apt update**
475 475  
476 - (% style="background-color:yellow" %)**apt install minicom**
477 -
478 -
479 -Use minicom to connect to the RPI's terminal
480 -
481 -[[image:image-20220602153146-3.png||height="439" width="500"]]
482 -
483 -
484 -
485 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
486 -
487 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
488 -
489 -
490 -[[image:image-20220602154928-5.png||height="436" width="500"]]
491 -
492 -
493 -
494 -(% style="color:blue" %)**4. Send Uplink message**
495 -
496 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
497 -
498 -example: AT+SENDB=01,02,8,05820802581ea0a5
499 -
500 -
501 -[[image:image-20220602160339-6.png||height="517" width="600"]]
502 -
503 -
504 -
505 -Check to see if TTN received the message
506 -
507 -[[image:image-20220602160627-7.png||height="369" width="800"]]
508 -
509 -
510 -
511 -== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
512 -
513 -
514 -
515 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
516 -
517 -
518 -
519 -
520 -= 4.  Order Info =
521 -
522 -
523 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
524 -
525 -
526 526  (% style="color:blue" %)**XXX**(%%): The default frequency band
527 527  
528 528  * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
... ... @@ -537,6 +537,10 @@
537 537  
538 538  
539 539  
540 -= 5.  Reference =
379 += 4.  Reference =
541 541  
542 -* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
381 +
382 +* Hardware Design File for LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
383 +* Mobile Phone App Source Code: [[Download>>https://github.com/dragino/LA66_Mobile_App]].
384 +
385 +
image-20220720111850-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +380.3 KB
Content
image-20220723100027-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20220723100439-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +749.8 KB
Content
image-20220723102027-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220723104754-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +231.5 KB
Content
image-20220723110520-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +3.2 MB
Content
image-20220723110626-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +3.6 MB
Content
image-20220723113448-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +298.5 KB
Content
image-20220723134549-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +392.3 KB
Content
image-20220723144339-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +324.7 KB
Content
image-20220723150132-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +698.8 KB
Content
image-20220723165950-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +278.4 KB
Content
image-20220723170210-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +883.0 KB
Content
image-20220723170545-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20220723170750-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.0 KB
Content
image-20220723171228-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.2 KB
Content
image-20220723172235-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +262.3 KB
Content
image-20220723172502-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +112.0 KB
Content
image-20220723172938-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +104.8 KB
Content
image-20220723173341-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.9 KB
Content
image-20220723173950-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +121.9 KB
Content
image-20220723175700-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.4 KB
Content
image-20220726135239-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +91.4 KB
Content
image-20220726135356-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.6 KB
Content
image-20220813173738-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +13.2 KB
Content
image-20220813174353-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +189.1 KB
Content
image-20220813183239-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +642.4 KB
Content
image-20220814101457-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +913.4 KB
Content
image-20220817084245-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +317.6 KB
Content
image-20220817084532-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +174.9 KB
Content
image-20220817093644-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +217.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0