<
From version < 100.3 >
edited by Xiaoling
on 2022/07/19 11:41
To version < 148.3 >
edited by Xiaoling
on 2022/08/17 09:27
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LA66 LoRaWAN Module
1 +LA66 USB LoRaWAN Adapter User Manual
Content
... ... @@ -6,34 +6,26 @@
6 6  
7 7  
8 8  
9 -= 1.  LA66 LoRaWAN Module =
10 10  
11 11  
12 -== 1.1  What is LA66 LoRaWAN Module ==
11 += 1.  LA66 USB LoRaWAN Adapter =
13 13  
14 14  
15 -(((
16 -(((
17 -[[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 -)))
14 +== 1.1  Overview ==
19 19  
20 -(((
21 -
22 -)))
23 23  
17 +[[image:image-20220715001142-3.png||height="145" width="220"]]
18 +
19 +
24 24  (((
25 -(% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
21 +(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
26 26  )))
27 -)))
28 28  
29 29  (((
30 -(((
31 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
25 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
32 32  )))
33 -)))
34 34  
35 35  (((
36 -(((
37 37  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
38 38  )))
39 39  
... ... @@ -40,145 +40,38 @@
40 40  (((
41 41  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
42 42  )))
43 -)))
44 44  
45 45  (((
46 -(((
47 47  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
48 48  )))
49 -)))
50 50  
51 51  
52 52  
53 53  == 1.2  Features ==
54 54  
44 +
45 +* LoRaWAN USB adapter base on LA66 LoRaWAN module
46 +* Ultra-long RF range
55 55  * Support LoRaWAN v1.0.4 protocol
56 56  * Support peer-to-peer protocol
57 57  * TCXO crystal to ensure RF performance on low temperature
58 -* SMD Antenna pad and i-pex antenna connector
50 +* Spring RF antenna
59 59  * Available in different frequency LoRaWAN frequency bands.
60 60  * World-wide unique OTAA keys.
61 61  * AT Command via UART-TTL interface
62 62  * Firmware upgradable via UART interface
63 -* Ultra-long RF range
55 +* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
64 64  
65 65  
66 66  
59 +
67 67  == 1.3  Specification ==
68 68  
69 -* CPU: 32-bit 48 MHz
70 -* Flash: 256KB
71 -* RAM: 64KB
72 -* Input Power Range: 1.8v ~~ 3.7v
73 -* Power Consumption: < 4uA.
74 -* Frequency Range: 150 MHz ~~ 960 MHz
75 -* Maximum Power +22 dBm constant RF output
76 -* High sensitivity: -148 dBm
77 -* Temperature:
78 -** Storage: -55 ~~ +125℃
79 -** Operating: -40 ~~ +85℃
80 -* Humidity:
81 -** Storage: 5 ~~ 95% (Non-Condensing)
82 -** Operating: 10 ~~ 95% (Non-Condensing)
83 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
84 -* LoRa Rx current: <9 mA
85 -* I/O Voltage: 3.3v
86 86  
87 -
88 -
89 -== 1.4  AT Command ==
90 -
91 -
92 -AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
93 -
94 -
95 -
96 -== 1.5  Dimension ==
97 -
98 -[[image:image-20220718094750-3.png]]
99 -
100 -
101 -
102 -
103 -== 1.6  Pin Mapping ==
104 -
105 -
106 -[[image:image-20220719093156-1.png]]
107 -
108 -
109 -
110 -== 1.7  Land Pattern ==
111 -
112 -[[image:image-20220517072821-2.png]]
113 -
114 -
115 -
116 -= 2.  LA66 LoRaWAN Shield =
117 -
118 -
119 -== 2.1  Overview ==
120 -
121 -
122 -(((
123 -[[image:image-20220715000826-2.png||height="145" width="220"]]
124 -)))
125 -
126 -(((
127 -
128 -)))
129 -
130 -(((
131 -LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
132 -)))
133 -
134 -(((
135 -(((
136 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
137 -)))
138 -)))
139 -
140 -(((
141 -(((
142 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
143 -)))
144 -)))
145 -
146 -(((
147 -(((
148 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
149 -)))
150 -)))
151 -
152 -(((
153 -(((
154 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
155 -)))
156 -)))
157 -
158 -
159 -
160 -== 2.2  Features ==
161 -
162 -* Arduino Shield base on LA66 LoRaWAN module
163 -* Support LoRaWAN v1.0.4 protocol
164 -* Support peer-to-peer protocol
165 -* TCXO crystal to ensure RF performance on low temperature
166 -* SMA connector
167 -* Available in different frequency LoRaWAN frequency bands.
168 -* World-wide unique OTAA keys.
169 -* AT Command via UART-TTL interface
170 -* Firmware upgradable via UART interface
171 -* Ultra-long RF range
172 -
173 -
174 -
175 -== 2.3  Specification ==
176 -
177 177  * CPU: 32-bit 48 MHz
178 178  * Flash: 256KB
179 179  * RAM: 64KB
180 -* Input Power Range: 1.8v ~~ 3.7v
181 -* Power Consumption: < 4uA.
66 +* Input Power Range: 5v
182 182  * Frequency Range: 150 MHz ~~ 960 MHz
183 183  * Maximum Power +22 dBm constant RF output
184 184  * High sensitivity: -148 dBm
... ... @@ -190,339 +190,278 @@
190 190  ** Operating: 10 ~~ 95% (Non-Condensing)
191 191  * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
192 192  * LoRa Rx current: <9 mA
193 -* I/O Voltage: 3.3v
194 194  
195 195  
196 196  
197 -== 2.4  Pin Mapping & LED ==
198 198  
82 +== 1.4  Pin Mapping & LED ==
199 199  
84 +[[image:image-20220813183239-3.png||height="526" width="662"]]
200 200  
201 -== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
202 202  
203 203  
88 +== 1.5  Example: Send & Get Messages via LoRaWAN in PC ==
204 204  
205 -== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
206 206  
207 -
208 -
209 -== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
210 -
211 -
212 -
213 -== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
214 -
215 -
216 -=== 2.8.1  Items needed for update ===
217 -
218 -1. LA66 LoRaWAN Shield
219 -1. Arduino
220 -1. USB TO TTL Adapter
221 -
222 -
223 -
224 -[[image:image-20220602100052-2.png||height="385" width="600"]]
225 -
226 -
227 -=== 2.8.2  Connection ===
228 -
229 -
230 -[[image:image-20220602101311-3.png||height="276" width="600"]]
231 -
232 -
233 233  (((
234 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
92 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
235 235  )))
236 236  
237 -(((
238 -(% style="background-color:yellow" %)**GND  <-> GND
239 -TXD  <->  TXD
240 -RXD  <->  RXD**
241 -)))
242 242  
96 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
243 243  
244 -Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
245 245  
246 -Connect USB TTL Adapter to PC after connecting the wires
99 +[[image:image-20220723100027-1.png]]
247 247  
248 248  
249 -[[image:image-20220602102240-4.png||height="304" width="600"]]
102 +Open the serial port tool
250 250  
104 +[[image:image-20220602161617-8.png]]
251 251  
252 -=== 2.8.3  Upgrade steps ===
106 +[[image:image-20220602161718-9.png||height="457" width="800"]]
253 253  
254 254  
255 -==== 1.  Switch SW1 to put in ISP position ====
256 256  
110 +(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
257 257  
258 -[[image:image-20220602102824-5.png||height="306" width="600"]]
112 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
259 259  
260 260  
115 +[[image:image-20220602161935-10.png||height="498" width="800"]]
261 261  
262 -==== 2.  Press the RST switch once ====
263 263  
264 264  
265 -[[image:image-20220602104701-12.png||height="285" width="600"]]
119 +(% style="color:blue" %)**3. See Uplink Command**
266 266  
121 +Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
267 267  
123 +example: AT+SENDB=01,02,8,05820802581ea0a5
268 268  
269 -==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
125 +[[image:image-20220602162157-11.png||height="497" width="800"]]
270 270  
271 271  
272 -(((
273 -(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
274 -)))
275 275  
129 +(% style="color:blue" %)**4. Check to see if TTN received the message**
276 276  
277 -[[image:image-20220602103227-6.png]]
131 +[[image:image-20220817084532-1.jpeg||height="563" width="1076"]]
278 278  
279 279  
280 -[[image:image-20220602103357-7.png]]
281 281  
135 +== 1.6  Example: Send PC's CPU/RAM usage to TTN via python ==
282 282  
283 283  
284 -(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
285 -(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
138 +**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
286 286  
140 +(**Raspberry Pi example: **[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py]])
287 287  
288 -[[image:image-20220602103844-8.png]]
142 +(% style="color:red" %)**Preconditions:**
289 289  
144 +(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
290 290  
146 +(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
291 291  
292 -(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
293 -(% style="color:blue" %)**3. Select the bin file to burn**
294 294  
295 295  
296 -[[image:image-20220602104144-9.png]]
150 +(% style="color:blue" %)**Steps for usage:**
297 297  
152 +(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
298 298  
299 -[[image:image-20220602104251-10.png]]
154 +(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
300 300  
156 +[[image:image-20220602115852-3.png||height="450" width="1187"]]
301 301  
302 -[[image:image-20220602104402-11.png]]
303 303  
304 304  
160 +== 1.7  Example: Send & Get Messages via LoRaWAN in RPi ==
305 305  
306 -(% class="wikigeneratedid" id="HClicktostartthedownload" %)
307 -(% style="color:blue" %)**4. Click to start the download**
308 308  
309 -[[image:image-20220602104923-13.png]]
163 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
310 310  
311 311  
166 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
312 312  
313 -(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
314 -(% style="color:blue" %)**5. Check update process**
168 +[[image:image-20220723100439-2.png]]
315 315  
316 316  
317 -[[image:image-20220602104948-14.png]]
318 318  
172 +(% style="color:blue" %)**2. Install Minicom in RPi.**
319 319  
174 +(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
320 320  
321 -(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
322 -(% style="color:blue" %)**The following picture shows that the burning is successful**
176 + (% style="background-color:yellow" %)**apt update**
323 323  
324 -[[image:image-20220602105251-15.png]]
178 + (% style="background-color:yellow" %)**apt install minicom**
325 325  
326 326  
181 +Use minicom to connect to the RPI's terminal
327 327  
328 -= 3.  LA66 USB LoRaWAN Adapter =
183 +[[image:image-20220602153146-3.png||height="439" width="500"]]
329 329  
330 330  
331 -== 3.1  Overview ==
332 332  
187 +(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
333 333  
334 -[[image:image-20220715001142-3.png||height="145" width="220"]]
189 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
335 335  
336 336  
337 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
192 +[[image:image-20220602154928-5.png||height="436" width="500"]]
338 338  
339 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
340 340  
341 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
342 342  
343 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
196 +(% style="color:blue" %)**4. Send Uplink message**
344 344  
345 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
198 +Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
346 346  
200 +example: AT+SENDB=01,02,8,05820802581ea0a5
347 347  
348 348  
349 -== 3.2  Features ==
203 +[[image:image-20220602160339-6.png||height="517" width="600"]]
350 350  
351 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
352 -* Ultra-long RF range
353 -* Support LoRaWAN v1.0.4 protocol
354 -* Support peer-to-peer protocol
355 -* TCXO crystal to ensure RF performance on low temperature
356 -* Spring RF antenna
357 -* Available in different frequency LoRaWAN frequency bands.
358 -* World-wide unique OTAA keys.
359 -* AT Command via UART-TTL interface
360 -* Firmware upgradable via UART interface
361 -* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
362 362  
363 363  
207 +Check to see if TTN received the message
364 364  
365 -== 3.3  Specification ==
209 +[[image:image-20220602160627-7.png||height="369" width="800"]]
366 366  
367 -* CPU: 32-bit 48 MHz
368 -* Flash: 256KB
369 -* RAM: 64KB
370 -* Input Power Range: 5v
371 -* Frequency Range: 150 MHz ~~ 960 MHz
372 -* Maximum Power +22 dBm constant RF output
373 -* High sensitivity: -148 dBm
374 -* Temperature:
375 -** Storage: -55 ~~ +125℃
376 -** Operating: -40 ~~ +85℃
377 -* Humidity:
378 -** Storage: 5 ~~ 95% (Non-Condensing)
379 -** Operating: 10 ~~ 95% (Non-Condensing)
380 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
381 -* LoRa Rx current: <9 mA
382 382  
383 383  
213 +== 1.8  Example: Use of LA66 USB LoRaWAN Adapter and mobile APP ==
384 384  
385 -== 3.4  Pin Mapping & LED ==
386 386  
216 +=== 1.8.1  Hardware and Software Connection ===
387 387  
388 388  
389 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
390 390  
220 +==== (% style="color:blue" %)**Overview:**(%%) ====
391 391  
392 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
393 393  
223 +(((
224 +DRAGINO-LA66-APP is an Open Source mobile APP for LA66 USB LoRaWAN Adapter. DRAGINO-LA66-APP has below features:
394 394  
395 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
226 +* Send real-time location information of mobile phone to LoRaWAN network.
227 +* Check LoRaWAN network signal strengh.
228 +* Manually send messages to LoRaWAN network.
229 +)))
396 396  
397 397  
398 -[[image:image-20220602171217-1.png||height="538" width="800"]]
399 399  
400 400  
401 -Open the serial port tool
234 +==== (% style="color:blue" %)**Hardware Connection:**(%%) ====
402 402  
403 -[[image:image-20220602161617-8.png]]
236 +A USB to Type-C adapter is needed to connect to a Mobile phone.
404 404  
405 -[[image:image-20220602161718-9.png||height="457" width="800"]]
238 +Note: The package of LA66 USB adapter already includes this USB Type-C adapter.
406 406  
240 +[[image:image-20220813174353-2.png||height="360" width="313"]]
407 407  
408 408  
409 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
410 410  
411 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
244 +==== (% style="color:blue" %)**Download and Install App:**(%%) ====
412 412  
246 +[[(% id="cke_bm_895007S" style="display:none" %)** **(%%)**Download Link for Android apk **>>https://www.dropbox.com/sh/zxwx16qb777uvkz/AABE_P8coGCQ4DAC8enH4bUya?dl=0]].  (Android Version Only)
413 413  
414 -[[image:image-20220602161935-10.png||height="498" width="800"]]
248 +[[image:image-20220813173738-1.png]]
415 415  
416 416  
417 417  
418 -(% style="color:blue" %)**3. See Uplink Command**
252 +==== (% style="color:blue" %)**Use of APP:**(%%) ====
419 419  
420 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
254 +Function and page introduction
421 421  
422 -example: AT+SENDB=01,02,8,05820802581ea0a5
256 +[[image:image-20220723113448-7.png||height="995" width="450"]]
423 423  
424 -[[image:image-20220602162157-11.png||height="497" width="800"]]
258 +**Block Explain:**
425 425  
260 +1.  Display LA66 USB LoRaWAN Module connection status
426 426  
262 +2.  Check and reconnect
427 427  
428 -(% style="color:blue" %)**4. Check to see if TTN received the message**
264 +3.  Turn send timestamps on or off
429 429  
430 -[[image:image-20220602162331-12.png||height="420" width="800"]]
266 +4.  Display LoRaWan connection status
431 431  
268 +5.  Check LoRaWan connection status
432 432  
270 +6.  The RSSI value of the node when the ACK is received
433 433  
434 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
272 +7Node's Signal Strength Icon
435 435  
274 +8.  Configure Location Uplink Interval
436 436  
437 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
276 +9.  AT command input box
438 438  
278 +10.  Send Button:  Send input box info to LA66 USB Adapter
439 439  
440 -(% style="color:red" %)**Preconditions:**
280 +11.  Output Log from LA66 USB adapter
441 441  
442 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
282 +12.  clear log button
443 443  
444 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
284 +13.  exit button
445 445  
446 446  
287 +LA66 USB LoRaWAN Module not connected
447 447  
448 -(% style="color:blue" %)**Steps for usage:**
289 +[[image:image-20220723110520-5.png||height="677" width="508"]]
449 449  
450 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
451 451  
452 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
453 453  
454 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
293 +Connect LA66 USB LoRaWAN Module
455 455  
295 +[[image:image-20220723110626-6.png||height="681" width="511"]]
456 456  
457 457  
458 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
459 459  
299 +=== 1.8.2  Send data to TTNv3 and plot location info in Node-Red ===
460 460  
461 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
462 462  
302 +(% style="color:blue" %)**1.  Register LA66 USB LoRaWAN Module to TTNV3**
463 463  
464 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
304 +[[image:image-20220723134549-8.png]]
465 465  
466 -[[image:image-20220602171233-2.png||height="538" width="800"]]
467 467  
468 468  
308 +(% style="color:blue" %)**2.  Open Node-RED,And import the JSON file to generate the flow**
469 469  
470 -(% style="color:blue" %)**2. Install Minicom in RPi.**
310 +Sample JSON file please go to **[[this link>>https://www.dropbox.com/sh/zxwx16qb777uvkz/AABE_P8coGCQ4DAC8enH4bUya?dl=0]]** to download.
471 471  
472 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
312 +For the usage of Node-RED, please refer to: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Node-RED/>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]]
473 473  
474 - (% style="background-color:yellow" %)**apt update**
314 +After see LoRaWAN Online, walk around and the APP will keep sending location info to LoRaWAN server and then to the Node Red.
475 475  
476 - (% style="background-color:yellow" %)**apt install minicom**
477 477  
317 +Example output in NodeRed is as below:
478 478  
479 -Use minicom to connect to the RPI's terminal
319 +[[image:image-20220723144339-1.png]]
480 480  
481 -[[image:image-20220602153146-3.png||height="439" width="500"]]
482 482  
483 483  
323 +== 1.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
484 484  
485 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
486 486  
487 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
326 +The LA66 USB LoRaWAN Adapter is the same as the LA66 LoRaWAN Shield update method
488 488  
328 +Just use the yellow jumper cap to short the BOOT corner and the RX corner, and then press the RESET button (without the jumper cap, you can directly short the BOOT corner and the RX corner with a wire to achieve the same effect)
489 489  
490 -[[image:image-20220602154928-5.png||height="436" width="500"]]
330 +[[image:image-20220723150132-2.png]]
491 491  
492 492  
493 493  
494 -(% style="color:blue" %)**4. Send Uplink message**
334 += 2.  FAQ =
495 495  
496 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
497 497  
498 -example: AT+SENDB=01,02,8,05820802581ea0a5
337 +== 2.1  How to Compile Source Code for LA66? ==
499 499  
500 500  
501 -[[image:image-20220602160339-6.png||height="517" width="600"]]
340 +Compile and Upload Code to ASR6601 Platform :[[Instruction>>Main.User Manual for LoRaWAN End Nodes.LA66 LoRaWAN Module.Compile and Upload Code to ASR6601 Platform.WebHome]]
502 502  
503 503  
504 504  
505 -Check to see if TTN received the message
344 += 3.  Order Info =
506 506  
507 -[[image:image-20220602160627-7.png||height="369" width="800"]]
508 508  
347 +**Part Number:**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
509 509  
510 510  
511 -== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
512 -
513 -
514 -
515 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
516 -
517 -
518 -
519 -
520 -= 4.  Order Info =
521 -
522 -
523 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
524 -
525 -
526 526  (% style="color:blue" %)**XXX**(%%): The default frequency band
527 527  
528 528  * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
... ... @@ -537,6 +537,7 @@
537 537  
538 538  
539 539  
540 -= 5.  Reference =
364 += 4.  Reference =
541 541  
542 -* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
366 +
367 +* Hardware Design File for LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
image-20220720111850-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +380.3 KB
Content
image-20220723100027-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20220723100439-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +749.8 KB
Content
image-20220723102027-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220723104754-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +231.5 KB
Content
image-20220723110520-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +3.2 MB
Content
image-20220723110626-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +3.6 MB
Content
image-20220723113448-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +298.5 KB
Content
image-20220723134549-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +392.3 KB
Content
image-20220723144339-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +324.7 KB
Content
image-20220723150132-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +698.8 KB
Content
image-20220723165950-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +278.4 KB
Content
image-20220723170210-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +883.0 KB
Content
image-20220723170545-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20220723170750-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.0 KB
Content
image-20220723171228-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.2 KB
Content
image-20220723172235-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +262.3 KB
Content
image-20220723172502-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +112.0 KB
Content
image-20220723172938-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +104.8 KB
Content
image-20220723173341-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.9 KB
Content
image-20220723173950-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +121.9 KB
Content
image-20220723175700-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.4 KB
Content
image-20220726135239-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +91.4 KB
Content
image-20220726135356-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.6 KB
Content
image-20220813173738-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +13.2 KB
Content
image-20220813174353-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +189.1 KB
Content
image-20220813183239-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +642.4 KB
Content
image-20220814101457-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +913.4 KB
Content
image-20220817084245-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +317.6 KB
Content
image-20220817084532-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +174.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0