<
From version < 100.2 >
edited by Xiaoling
on 2022/07/19 11:34
To version < 150.1 >
edited by Edwin Chen
on 2022/08/30 19:09
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LA66 LoRaWAN Module
1 +LA66 USB LoRaWAN Adapter User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -6,35 +6,26 @@
6 6  
7 7  
8 8  
9 -= 1.  LA66 LoRaWAN Module =
10 10  
11 11  
12 -== 1.1  What is LA66 LoRaWAN Module ==
11 += 1.  LA66 USB LoRaWAN Adapter =
13 13  
14 14  
14 +== 1.1  Overview ==
15 15  
16 -(((
17 -(((
18 -[[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
19 -)))
20 20  
21 -(((
22 -
23 -)))
17 +[[image:image-20220715001142-3.png||height="145" width="220"]]
24 24  
19 +
25 25  (((
26 -(% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
21 +(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
27 27  )))
28 -)))
29 29  
30 30  (((
31 -(((
32 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
25 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
33 33  )))
34 -)))
35 35  
36 36  (((
37 -(((
38 38  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
39 39  )))
40 40  
... ... @@ -41,38 +41,36 @@
41 41  (((
42 42  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
43 43  )))
44 -)))
45 45  
46 46  (((
47 -(((
48 48  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
49 49  )))
50 -)))
51 51  
52 52  
53 53  
54 -
55 55  == 1.2  Features ==
56 56  
44 +
45 +* LoRaWAN USB adapter base on LA66 LoRaWAN module
46 +* Ultra-long RF range
57 57  * Support LoRaWAN v1.0.4 protocol
58 58  * Support peer-to-peer protocol
59 59  * TCXO crystal to ensure RF performance on low temperature
60 -* SMD Antenna pad and i-pex antenna connector
50 +* Spring RF antenna
61 61  * Available in different frequency LoRaWAN frequency bands.
62 62  * World-wide unique OTAA keys.
63 63  * AT Command via UART-TTL interface
64 64  * Firmware upgradable via UART interface
65 -* Ultra-long RF range
55 +* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
66 66  
67 67  
68 -
69 69  == 1.3  Specification ==
70 70  
60 +
71 71  * CPU: 32-bit 48 MHz
72 72  * Flash: 256KB
73 73  * RAM: 64KB
74 -* Input Power Range: 1.8v ~~ 3.7v
75 -* Power Consumption: < 4uA.
64 +* Input Power Range: 5v
76 76  * Frequency Range: 150 MHz ~~ 960 MHz
77 77  * Maximum Power +22 dBm constant RF output
78 78  * High sensitivity: -148 dBm
... ... @@ -84,446 +84,295 @@
84 84  ** Operating: 10 ~~ 95% (Non-Condensing)
85 85  * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
86 86  * LoRa Rx current: <9 mA
87 -* I/O Voltage: 3.3v
88 88  
89 89  
78 +== 1.4  Pin Mapping & LED ==
90 90  
91 -== 1.4  AT Command ==
92 92  
81 +[[image:image-20220813183239-3.png||height="526" width="662"]]
93 93  
94 -AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
95 95  
96 96  
85 +== 1.5  Example: Send & Get Messages via LoRaWAN in PC ==
97 97  
98 -== 1.5  Dimension ==
99 99  
100 -[[image:image-20220718094750-3.png]]
101 -
102 -
103 -
104 -
105 -== 1.6  Pin Mapping ==
106 -
107 -
108 -[[image:image-20220719093156-1.png]]
109 -
110 -
111 -
112 -== 1.7  Land Pattern ==
113 -
114 -[[image:image-20220517072821-2.png]]
115 -
116 -
117 -
118 -= 2.  LA66 LoRaWAN Shield =
119 -
120 -
121 -== 2.1  Overview ==
122 -
123 -
124 -
125 125  (((
126 -[[image:image-20220715000826-2.png||height="145" width="220"]]
89 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
127 127  )))
128 128  
129 -(((
130 -
131 -)))
132 132  
133 -(((
134 -LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
135 -)))
93 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
136 136  
137 -(((
138 -(((
139 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
140 -)))
141 -)))
142 142  
143 -(((
144 -(((
145 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
146 -)))
147 -)))
96 +[[image:image-20220723100027-1.png]]
148 148  
149 -(((
150 -(((
151 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
152 -)))
153 -)))
154 154  
155 -(((
156 -(((
157 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
158 -)))
159 -)))
99 +Open the serial port tool
160 160  
101 +[[image:image-20220602161617-8.png]]
161 161  
103 +[[image:image-20220602161718-9.png||height="457" width="800"]]
162 162  
163 163  
164 -== 2.2  Features ==
165 165  
166 -* Arduino Shield base on LA66 LoRaWAN module
167 -* Support LoRaWAN v1.0.4 protocol
168 -* Support peer-to-peer protocol
169 -* TCXO crystal to ensure RF performance on low temperature
170 -* SMA connector
171 -* Available in different frequency LoRaWAN frequency bands.
172 -* World-wide unique OTAA keys.
173 -* AT Command via UART-TTL interface
174 -* Firmware upgradable via UART interface
175 -* Ultra-long RF range
107 +(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
176 176  
177 177  
110 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
178 178  
179 179  
180 -== 2.3  Specification ==
113 +[[image:image-20220602161935-10.png||height="498" width="800"]]
181 181  
182 -* CPU: 32-bit 48 MHz
183 -* Flash: 256KB
184 -* RAM: 64KB
185 -* Input Power Range: 1.8v ~~ 3.7v
186 -* Power Consumption: < 4uA.
187 -* Frequency Range: 150 MHz ~~ 960 MHz
188 -* Maximum Power +22 dBm constant RF output
189 -* High sensitivity: -148 dBm
190 -* Temperature:
191 -** Storage: -55 ~~ +125℃
192 -** Operating: -40 ~~ +85℃
193 -* Humidity:
194 -** Storage: 5 ~~ 95% (Non-Condensing)
195 -** Operating: 10 ~~ 95% (Non-Condensing)
196 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
197 -* LoRa Rx current: <9 mA
198 -* I/O Voltage: 3.3v
199 199  
200 200  
117 +(% style="color:blue" %)**3. See Uplink Command**
201 201  
202 202  
203 -== 2.4  Pin Mapping & LED ==
120 +Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
204 204  
122 +example: AT+SENDB=01,02,8,05820802581ea0a5
205 205  
124 +[[image:image-20220602162157-11.png||height="497" width="800"]]
206 206  
207 -== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
208 208  
209 209  
128 +(% style="color:blue" %)**4. Check to see if TTN received the message**
210 210  
211 -== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
212 212  
131 +[[image:image-20220817093644-1.png]]
213 213  
214 214  
215 -== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
216 216  
135 +== 1.6  Example: Send PC's CPU/RAM usage to TTN via python ==
217 217  
218 218  
219 -== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
138 +**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
220 220  
140 +(**Raspberry Pi example: **[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py]])
221 221  
222 -=== 2.8.1  Items needed for update ===
223 223  
224 -1. LA66 LoRaWAN Shield
225 -1. Arduino
226 -1. USB TO TTL Adapter
143 +(% style="color:red" %)**Preconditions:**
227 227  
228 -[[image:image-20220602100052-2.png||height="385" width="600"]]
145 +(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
229 229  
147 +(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
230 230  
231 -=== 2.8.2  Connection ===
232 232  
233 233  
234 -[[image:image-20220602101311-3.png||height="276" width="600"]]
151 +(% style="color:blue" %)**Steps for usage:**
235 235  
153 +(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
236 236  
237 -(((
238 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
239 -)))
155 +(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
240 240  
241 -(((
242 -(% style="background-color:yellow" %)**GND  <-> GND
243 -TXD  <->  TXD
244 -RXD  <->  RXD**
245 -)))
246 246  
158 +[[image:image-20220602115852-3.png||height="450" width="1187"]]
247 247  
248 -Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
249 249  
250 -Connect USB TTL Adapter to PC after connecting the wires
251 251  
162 +== 1.7  Example: Send & Get Messages via LoRaWAN in RPi ==
252 252  
253 -[[image:image-20220602102240-4.png||height="304" width="600"]]
254 254  
165 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
255 255  
256 -=== 2.8.3  Upgrade steps ===
257 257  
168 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
258 258  
259 -==== 1.  Switch SW1 to put in ISP position ====
260 260  
171 +[[image:image-20220723100439-2.png]]
261 261  
262 -[[image:image-20220602102824-5.png||height="306" width="600"]]
263 263  
264 264  
175 +(% style="color:blue" %)**2. Install Minicom in RPi.**
265 265  
266 -==== 2.  Press the RST switch once ====
267 267  
178 +(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
268 268  
269 -[[image:image-20220602104701-12.png||height="285" width="600"]]
180 + (% style="background-color:yellow" %)**apt update**
270 270  
182 + (% style="background-color:yellow" %)**apt install minicom**
271 271  
272 272  
273 -==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
185 +Use minicom to connect to the RPI's terminal
274 274  
187 +[[image:image-20220602153146-3.png||height="439" width="500"]]
275 275  
276 -(((
277 -(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
278 -)))
279 279  
280 280  
281 -[[image:image-20220602103227-6.png]]
191 +(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
282 282  
283 283  
284 -[[image:image-20220602103357-7.png]]
194 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
285 285  
286 286  
197 +[[image:image-20220602154928-5.png||height="436" width="500"]]
287 287  
288 -(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
289 -(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
290 290  
291 291  
292 -[[image:image-20220602103844-8.png]]
201 +(% style="color:blue" %)**4. Send Uplink message**
293 293  
294 294  
204 +Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
295 295  
296 -(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
297 -(% style="color:blue" %)**3. Select the bin file to burn**
206 +example: AT+SENDB=01,02,8,05820802581ea0a5
298 298  
299 299  
300 -[[image:image-20220602104144-9.png]]
209 +[[image:image-20220602160339-6.png||height="517" width="600"]]
301 301  
302 302  
303 -[[image:image-20220602104251-10.png]]
304 304  
213 +Check to see if TTN received the message
305 305  
306 -[[image:image-20220602104402-11.png]]
215 +[[image:image-20220602160627-7.png||height="369" width="800"]]
307 307  
308 308  
309 309  
310 -(% class="wikigeneratedid" id="HClicktostartthedownload" %)
311 -(% style="color:blue" %)**4. Click to start the download**
219 +== 1.8  Example: Use of LA66 USB LoRaWAN Adapter and mobile APP ==
312 312  
313 -[[image:image-20220602104923-13.png]]
314 314  
222 +=== 1.8.1  Hardware and Software Connection ===
315 315  
316 316  
317 -(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
318 -(% style="color:blue" %)**5. Check update process**
319 319  
226 +==== (% style="color:blue" %)**Overview:**(%%) ====
320 320  
321 -[[image:image-20220602104948-14.png]]
322 322  
229 +(((
230 +DRAGINO-LA66-APP is an Open Source mobile APP for LA66 USB LoRaWAN Adapter. DRAGINO-LA66-APP has below features:
323 323  
232 +* Send real-time location information of mobile phone to LoRaWAN network.
233 +* Check LoRaWAN network signal strengh.
234 +* Manually send messages to LoRaWAN network.
235 +)))
324 324  
325 -(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
326 -(% style="color:blue" %)**The following picture shows that the burning is successful**
327 327  
328 -[[image:image-20220602105251-15.png]]
329 329  
330 330  
240 +==== (% style="color:blue" %)**Hardware Connection:**(%%) ====
331 331  
332 -= 3.  LA66 USB LoRaWAN Adapter =
333 333  
243 +A USB to Type-C adapter is needed to connect to a Mobile phone.
334 334  
335 -== 3.1  Overview ==
245 +Note: The package of LA66 USB adapter already includes this USB Type-C adapter.
336 336  
337 -[[image:image-20220715001142-3.png||height="145" width="220"]]
247 +[[image:image-20220813174353-2.png||height="360" width="313"]]
338 338  
339 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
340 340  
341 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
342 342  
343 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
251 +==== (% style="color:blue" %)**Download and Install App:**(%%) ====
344 344  
345 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
346 346  
347 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
254 +[[(% id="cke_bm_895007S" style="display:none" %)** **(%%)**Download Link for Android apk **>>https://www.dropbox.com/sh/zxwx16qb777uvkz/AABE_P8coGCQ4DAC8enH4bUya?dl=0]].  (Android Version Only)
348 348  
256 +[[image:image-20220813173738-1.png]]
349 349  
350 -== 3.2  Features ==
351 351  
352 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
353 -* Ultra-long RF range
354 -* Support LoRaWAN v1.0.4 protocol
355 -* Support peer-to-peer protocol
356 -* TCXO crystal to ensure RF performance on low temperature
357 -* Spring RF antenna
358 -* Available in different frequency LoRaWAN frequency bands.
359 -* World-wide unique OTAA keys.
360 -* AT Command via UART-TTL interface
361 -* Firmware upgradable via UART interface
362 -* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
363 363  
260 +==== (% style="color:blue" %)**Use of APP:**(%%) ====
364 364  
365 365  
366 -== 3.3  Specification ==
263 +Function and page introduction
367 367  
368 -* CPU: 32-bit 48 MHz
369 -* Flash: 256KB
370 -* RAM: 64KB
371 -* Input Power Range: 5v
372 -* Frequency Range: 150 MHz ~~ 960 MHz
373 -* Maximum Power +22 dBm constant RF output
374 -* High sensitivity: -148 dBm
375 -* Temperature:
376 -** Storage: -55 ~~ +125℃
377 -** Operating: -40 ~~ +85℃
378 -* Humidity:
379 -** Storage: 5 ~~ 95% (Non-Condensing)
380 -** Operating: 10 ~~ 95% (Non-Condensing)
381 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
382 -* LoRa Rx current: <9 mA
383 383  
266 +[[image:image-20220723113448-7.png||height="995" width="450"]]
384 384  
268 +**Block Explain:**
385 385  
386 -== 3.4  Pin Mapping & LED ==
270 +1Display LA66 USB LoRaWAN Module connection status
387 387  
272 +2.  Check and reconnect
388 388  
274 +3.  Turn send timestamps on or off
389 389  
390 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
276 +4Display LoRaWan connection status
391 391  
278 +5.  Check LoRaWan connection status
392 392  
393 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
280 +6.  The RSSI value of the node when the ACK is received
394 394  
282 +7.  Node's Signal Strength Icon
395 395  
396 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
284 +8.  Configure Location Uplink Interval
397 397  
286 +9.  AT command input box
398 398  
399 -[[image:image-20220602171217-1.png||height="538" width="800"]]
288 +10.  Send Button:  Send input box info to LA66 USB Adapter
400 400  
290 +11.  Output Log from LA66 USB adapter
401 401  
402 -Open the serial port tool
292 +12.  clear log button
403 403  
404 -[[image:image-20220602161617-8.png]]
294 +13.  exit button
405 405  
406 -[[image:image-20220602161718-9.png||height="457" width="800"]]
407 407  
408 408  
298 +LA66 USB LoRaWAN Module not connected
409 409  
410 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
411 411  
412 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
301 +[[image:image-20220723110520-5.png||height="677" width="508"]]
413 413  
414 414  
415 -[[image:image-20220602161935-10.png||height="498" width="800"]]
416 416  
305 +Connect LA66 USB LoRaWAN Module
417 417  
307 +[[image:image-20220723110626-6.png||height="681" width="511"]]
418 418  
419 -(% style="color:blue" %)**3. See Uplink Command**
420 420  
421 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
422 422  
423 -example: AT+SENDB=01,02,8,05820802581ea0a5
311 +=== 1.8.2  Send data to TTNv3 and plot location info in Node-Red ===
424 424  
425 -[[image:image-20220602162157-11.png||height="497" width="800"]]
426 426  
314 +(% style="color:blue" %)**1.  Register LA66 USB LoRaWAN Module to TTNV3**
427 427  
428 428  
429 -(% style="color:blue" %)**4. Check to see if TTN received the message**
317 +[[image:image-20220723134549-8.png]]
430 430  
431 -[[image:image-20220602162331-12.png||height="420" width="800"]]
432 432  
433 433  
321 +(% style="color:blue" %)**2.  Open Node-RED,And import the JSON file to generate the flow**
434 434  
435 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
436 436  
324 +Sample JSON file please go to **[[this link>>https://www.dropbox.com/sh/zxwx16qb777uvkz/AABE_P8coGCQ4DAC8enH4bUya?dl=0]]** to download.
437 437  
438 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
326 +For the usage of Node-RED, please refer to: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Node-RED/>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]]
439 439  
328 +After see LoRaWAN Online, walk around and the APP will keep sending location info to LoRaWAN server and then to the Node Red.
440 440  
441 -(% style="color:red" %)**Preconditions:**
442 442  
443 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
331 +Example output in NodeRed is as below:
444 444  
445 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
333 +[[image:image-20220723144339-1.png]]
446 446  
447 447  
448 448  
449 -(% style="color:blue" %)**Steps for usage:**
337 +== 1.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
450 450  
451 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
452 452  
453 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
340 +The LA66 USB LoRaWAN Adapter is the same as the LA66 LoRaWAN Shield update method
454 454  
455 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
342 +Just use the yellow jumper cap to short the BOOT corner and the RX corner, and then press the RESET button (without the jumper cap, you can directly short the BOOT corner and the RX corner with a wire to achieve the same effect)
456 456  
457 457  
345 +[[image:image-20220723150132-2.png]]
458 458  
459 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
460 460  
461 461  
462 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
349 += 2.  FAQ =
463 463  
464 464  
465 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
352 +== 2. How to Compile Source Code for LA66? ==
466 466  
467 -[[image:image-20220602171233-2.png||height="538" width="800"]]
468 468  
355 +Compile and Upload Code to ASR6601 Platform :[[Instruction>>Main.User Manual for LoRaWAN End Nodes.LA66 LoRaWAN Module.Compile and Upload Code to ASR6601 Platform.WebHome]]
469 469  
470 470  
471 -(% style="color:blue" %)**2. Install Minicom in RPi.**
472 472  
473 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
359 += 3 Order Info =
474 474  
475 - (% style="background-color:yellow" %)**apt update**
476 476  
477 - (% style="background-color:yellow" %)**apt install minicom**
362 +**Part Number:**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
478 478  
479 479  
480 -Use minicom to connect to the RPI's terminal
481 -
482 -[[image:image-20220602153146-3.png||height="439" width="500"]]
483 -
484 -
485 -
486 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
487 -
488 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
489 -
490 -
491 -[[image:image-20220602154928-5.png||height="436" width="500"]]
492 -
493 -
494 -
495 -(% style="color:blue" %)**4. Send Uplink message**
496 -
497 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
498 -
499 -example: AT+SENDB=01,02,8,05820802581ea0a5
500 -
501 -
502 -[[image:image-20220602160339-6.png||height="517" width="600"]]
503 -
504 -
505 -
506 -Check to see if TTN received the message
507 -
508 -[[image:image-20220602160627-7.png||height="369" width="800"]]
509 -
510 -
511 -
512 -== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
513 -
514 -
515 -
516 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
517 -
518 -
519 -
520 -
521 -= 4.  Order Info =
522 -
523 -
524 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
525 -
526 -
527 527  (% style="color:blue" %)**XXX**(%%): The default frequency band
528 528  
529 529  * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
... ... @@ -536,6 +536,12 @@
536 536  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
537 537  * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
538 538  
539 -= 5.  Reference =
540 540  
541 -* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
378 +
379 += 4.  Reference =
380 +
381 +
382 +* Hardware Design File for LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
383 +* Mobile Phone App Source Code: [[Download>>https://github.com/dragino/LA66_Mobile_App]].
384 +
385 +
image-20220720111850-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +380.3 KB
Content
image-20220723100027-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20220723100439-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +749.8 KB
Content
image-20220723102027-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220723104754-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +231.5 KB
Content
image-20220723110520-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +3.2 MB
Content
image-20220723110626-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +3.6 MB
Content
image-20220723113448-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +298.5 KB
Content
image-20220723134549-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +392.3 KB
Content
image-20220723144339-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +324.7 KB
Content
image-20220723150132-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +698.8 KB
Content
image-20220723165950-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +278.4 KB
Content
image-20220723170210-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +883.0 KB
Content
image-20220723170545-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20220723170750-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.0 KB
Content
image-20220723171228-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.2 KB
Content
image-20220723172235-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +262.3 KB
Content
image-20220723172502-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +112.0 KB
Content
image-20220723172938-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +104.8 KB
Content
image-20220723173341-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +117.9 KB
Content
image-20220723173950-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +121.9 KB
Content
image-20220723175700-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.4 KB
Content
image-20220726135239-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +91.4 KB
Content
image-20220726135356-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +45.6 KB
Content
image-20220813173738-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +13.2 KB
Content
image-20220813174353-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +189.1 KB
Content
image-20220813183239-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +642.4 KB
Content
image-20220814101457-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +913.4 KB
Content
image-20220817084245-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +317.6 KB
Content
image-20220817084532-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +174.9 KB
Content
image-20220817093644-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +217.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0