Show last authors
1
2
3 **Table of Contents:**
4
5 {{toc/}}
6
7
8
9 = 1.  LA66 LoRaWAN Module =
10
11
12 == 1.1  What is LA66 LoRaWAN Module ==
13
14
15 (((
16 [[image:image-20220715000242-1.png||height="110" width="132"]]
17
18 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
19 )))
20
21 (((
22 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
23 )))
24
25 (((
26 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
27 )))
28
29 (((
30 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
31 )))
32
33 (((
34 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
35 )))
36
37
38 == 1.2  Features ==
39
40 * Support LoRaWAN v1.0.4 protocol
41 * Support peer-to-peer protocol
42 * TCXO crystal to ensure RF performance on low temperature
43 * SMD Antenna pad and i-pex antenna connector
44 * Available in different frequency LoRaWAN frequency bands.
45 * World-wide unique OTAA keys.
46 * AT Command via UART-TTL interface
47 * Firmware upgradable via UART interface
48 * Ultra-long RF range
49
50
51
52 == 1.3  Specification ==
53
54 * CPU: 32-bit 48 MHz
55 * Flash: 256KB
56 * RAM: 64KB
57 * Input Power Range: 1.8v ~~ 3.7v
58 * Power Consumption: < 4uA.
59 * Frequency Range: 150 MHz ~~ 960 MHz
60 * Maximum Power +22 dBm constant RF output
61 * High sensitivity: -148 dBm
62 * Temperature:
63 ** Storage: -55 ~~ +125℃
64 ** Operating: -40 ~~ +85℃
65 * Humidity:
66 ** Storage: 5 ~~ 95% (Non-Condensing)
67 ** Operating: 10 ~~ 95% (Non-Condensing)
68 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
69 * LoRa Rx current: <9 mA
70 * I/O Voltage: 3.3v
71
72
73
74 == 1.4  AT Command ==
75
76 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
77
78
79 == 1.5  Dimension ==
80
81 [[image:image-20220517072526-1.png]]
82
83
84
85 == 1.6  Pin Mapping ==
86
87
88 [[image:image-20220523101537-1.png]]
89
90
91
92 == 1.7  Land Pattern ==
93
94 [[image:image-20220517072821-2.png]]
95
96
97
98 = 2.  LA66 LoRaWAN Shield =
99
100
101 == 2.1  Overview ==
102
103
104 [[image:image-20220715000826-2.png||height="386" width="449"]]
105
106
107 LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
108
109 (((
110 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
111 )))
112
113 (((
114 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
115 )))
116
117 (((
118 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
119 )))
120
121 (((
122 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
123 )))
124
125
126 == 2.2  Features ==
127
128 * Arduino Shield base on LA66 LoRaWAN module
129 * Support LoRaWAN v1.0.4 protocol
130 * Support peer-to-peer protocol
131 * TCXO crystal to ensure RF performance on low temperature
132 * SMA connector
133 * Available in different frequency LoRaWAN frequency bands.
134 * World-wide unique OTAA keys.
135 * AT Command via UART-TTL interface
136 * Firmware upgradable via UART interface
137 * Ultra-long RF range
138
139
140
141 == 2.3  Specification ==
142
143 * CPU: 32-bit 48 MHz
144 * Flash: 256KB
145 * RAM: 64KB
146 * Input Power Range: 1.8v ~~ 3.7v
147 * Power Consumption: < 4uA.
148 * Frequency Range: 150 MHz ~~ 960 MHz
149 * Maximum Power +22 dBm constant RF output
150 * High sensitivity: -148 dBm
151 * Temperature:
152 ** Storage: -55 ~~ +125℃
153 ** Operating: -40 ~~ +85℃
154 * Humidity:
155 ** Storage: 5 ~~ 95% (Non-Condensing)
156 ** Operating: 10 ~~ 95% (Non-Condensing)
157 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
158 * LoRa Rx current: <9 mA
159 * I/O Voltage: 3.3v
160
161
162
163 == 2.4  Pin Mapping & LED ==
164
165
166
167 == 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
168
169
170
171 == 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
172
173
174
175 == 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
176
177
178
179 == 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
180
181
182 === 2.8.1  Items needed for update ===
183
184 1. LA66 LoRaWAN Shield
185 1. Arduino
186 1. USB TO TTL Adapter
187
188 [[image:image-20220602100052-2.png||height="385" width="600"]]
189
190
191 === 2.8.2  Connection ===
192
193
194 [[image:image-20220602101311-3.png||height="276" width="600"]]
195
196
197 (((
198 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
199 )))
200
201 (((
202 (% style="background-color:yellow" %)**GND  <-> GND
203 TXD  <->  TXD
204 RXD  <->  RXD**
205 )))
206
207
208 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
209
210 Connect USB TTL Adapter to PC after connecting the wires
211
212
213 [[image:image-20220602102240-4.png||height="304" width="600"]]
214
215
216 === 2.8.3  Upgrade steps ===
217
218
219 ==== 1.  Switch SW1 to put in ISP position ====
220
221
222 [[image:image-20220602102824-5.png||height="306" width="600"]]
223
224
225
226 ==== 2.  Press the RST switch once ====
227
228
229 [[image:image-20220602104701-12.png||height="285" width="600"]]
230
231
232
233 ==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
234
235
236 (((
237 (% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
238 )))
239
240
241 [[image:image-20220602103227-6.png]]
242
243
244 [[image:image-20220602103357-7.png]]
245
246
247
248 (% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
249 (% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
250
251
252 [[image:image-20220602103844-8.png]]
253
254
255
256 (% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
257 (% style="color:blue" %)**3. Select the bin file to burn**
258
259
260 [[image:image-20220602104144-9.png]]
261
262
263 [[image:image-20220602104251-10.png]]
264
265
266 [[image:image-20220602104402-11.png]]
267
268
269
270 (% class="wikigeneratedid" id="HClicktostartthedownload" %)
271 (% style="color:blue" %)**4. Click to start the download**
272
273 [[image:image-20220602104923-13.png]]
274
275
276
277 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
278 (% style="color:blue" %)**5. Check update process**
279
280
281 [[image:image-20220602104948-14.png]]
282
283
284
285 (% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
286 (% style="color:blue" %)**The following picture shows that the burning is successful**
287
288 [[image:image-20220602105251-15.png]]
289
290
291
292 = 3.  LA66 USB LoRaWAN Adapter =
293
294
295 == 3.1  Overview ==
296
297 [[image:image-20220715001142-3.png||height="145" width="220"]]
298
299 (% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
300
301 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
302
303 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
304
305 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
306
307 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
308
309
310 == 3.2  Features ==
311
312 * LoRaWAN USB adapter base on LA66 LoRaWAN module
313 * Ultra-long RF range
314 * Support LoRaWAN v1.0.4 protocol
315 * Support peer-to-peer protocol
316 * TCXO crystal to ensure RF performance on low temperature
317 * Spring RF antenna
318 * Available in different frequency LoRaWAN frequency bands.
319 * World-wide unique OTAA keys.
320 * AT Command via UART-TTL interface
321 * Firmware upgradable via UART interface
322
323
324
325 == 3.3  Specification ==
326
327 * CPU: 32-bit 48 MHz
328 * Flash: 256KB
329 * RAM: 64KB
330 * Input Power Range: 5v
331 * Frequency Range: 150 MHz ~~ 960 MHz
332 * Maximum Power +22 dBm constant RF output
333 * High sensitivity: -148 dBm
334 * Temperature:
335 ** Storage: -55 ~~ +125℃
336 ** Operating: -40 ~~ +85℃
337 * Humidity:
338 ** Storage: 5 ~~ 95% (Non-Condensing)
339 ** Operating: 10 ~~ 95% (Non-Condensing)
340 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
341 * LoRa Rx current: <9 mA
342
343
344
345 == 3.4  Pin Mapping & LED ==
346
347
348
349 == 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
350
351
352 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
353
354
355 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
356
357
358 [[image:image-20220602171217-1.png||height="538" width="800"]]
359
360
361 Open the serial port tool
362
363 [[image:image-20220602161617-8.png]]
364
365 [[image:image-20220602161718-9.png||height="457" width="800"]]
366
367
368
369 (% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
370
371 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
372
373
374 [[image:image-20220602161935-10.png||height="498" width="800"]]
375
376
377
378 (% style="color:blue" %)**3. See Uplink Command**
379
380 Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
381
382 example: AT+SENDB=01,02,8,05820802581ea0a5
383
384 [[image:image-20220602162157-11.png||height="497" width="800"]]
385
386
387
388 (% style="color:blue" %)**4. Check to see if TTN received the message**
389
390 [[image:image-20220602162331-12.png||height="420" width="800"]]
391
392
393
394 == 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
395
396
397 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
398
399
400 (% style="color:red" %)**Preconditions:**
401
402 (% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
403
404 (% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
405
406
407
408 (% style="color:blue" %)**Steps for usage:**
409
410 (% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
411
412 (% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
413
414 [[image:image-20220602115852-3.png||height="450" width="1187"]]
415
416
417
418 == 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
419
420
421 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
422
423
424 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
425
426 [[image:image-20220602171233-2.png||height="538" width="800"]]
427
428
429
430 (% style="color:blue" %)**2. Install Minicom in RPi.**
431
432 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
433
434 (% style="background-color:yellow" %)**apt update**
435
436 (% style="background-color:yellow" %)**apt install minicom**
437
438
439 Use minicom to connect to the RPI's terminal
440
441 [[image:image-20220602153146-3.png||height="439" width="500"]]
442
443
444
445 (% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
446
447 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
448
449
450 [[image:image-20220602154928-5.png||height="436" width="500"]]
451
452
453
454 (% style="color:blue" %)**4. Send Uplink message**
455
456 Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
457
458 example: AT+SENDB=01,02,8,05820802581ea0a5
459
460
461 [[image:image-20220602160339-6.png||height="517" width="600"]]
462
463
464
465 Check to see if TTN received the message
466
467 [[image:image-20220602160627-7.png||height="369" width="800"]]
468
469
470
471 == 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
472
473
474
475 == 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
476
477
478
479
480 = 4.  Order Info =
481
482
483 **Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
484
485
486 (% style="color:blue" %)**XXX**(%%): The default frequency band
487
488 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
489 * (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
490 * (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
491 * (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
492 * (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
493 * (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
494 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
495 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
496 * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
497
498 = 5.  Reference =
499
500 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
501
502
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0