Show last authors
1
2
3 **Table of Contents:**
4
5 {{toc/}}
6
7
8
9 = 1.  LA66 LoRaWAN Module =
10
11
12 == 1.1  What is LA66 LoRaWAN Module ==
13
14
15 (((
16 (((
17 [[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 )))
19
20 (((
21
22 )))
23
24 (((
25 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
26 )))
27 )))
28
29 (((
30 (((
31 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
32 )))
33 )))
34
35 (((
36 (((
37 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
38 )))
39
40 (((
41 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
42 )))
43 )))
44
45 (((
46 (((
47 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
48 )))
49 )))
50
51
52
53 == 1.2  Features ==
54
55 * Support LoRaWAN v1.0.4 protocol
56 * Support peer-to-peer protocol
57 * TCXO crystal to ensure RF performance on low temperature
58 * SMD Antenna pad and i-pex antenna connector
59 * Available in different frequency LoRaWAN frequency bands.
60 * World-wide unique OTAA keys.
61 * AT Command via UART-TTL interface
62 * Firmware upgradable via UART interface
63 * Ultra-long RF range
64
65
66
67
68
69 == 1.3  Specification ==
70
71 * CPU: 32-bit 48 MHz
72 * Flash: 256KB
73 * RAM: 64KB
74 * Input Power Range: 1.8v ~~ 3.7v
75 * Power Consumption: < 4uA.
76 * Frequency Range: 150 MHz ~~ 960 MHz
77 * Maximum Power +22 dBm constant RF output
78 * High sensitivity: -148 dBm
79 * Temperature:
80 ** Storage: -55 ~~ +125℃
81 ** Operating: -40 ~~ +85℃
82 * Humidity:
83 ** Storage: 5 ~~ 95% (Non-Condensing)
84 ** Operating: 10 ~~ 95% (Non-Condensing)
85 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
86 * LoRa Rx current: <9 mA
87 * I/O Voltage: 3.3v
88
89
90
91
92
93 == 1.4  AT Command ==
94
95
96 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
97
98
99
100 == 1.5  Dimension ==
101
102 [[image:image-20220718094750-3.png]]
103
104
105
106 == 1.6  Pin Mapping ==
107
108 [[image:image-20220720111850-1.png]]
109
110
111
112 == 1.7  Land Pattern ==
113
114 [[image:image-20220517072821-2.png]]
115
116
117
118 = 2.  LA66 LoRaWAN Shield =
119
120
121 == 2.1  Overview ==
122
123
124 (((
125 [[image:image-20220715000826-2.png||height="145" width="220"]]
126 )))
127
128 (((
129
130 )))
131
132 (((
133 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
134 )))
135
136 (((
137 (((
138 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
139 )))
140 )))
141
142 (((
143 (((
144 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
145 )))
146 )))
147
148 (((
149 (((
150 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
151 )))
152 )))
153
154 (((
155 (((
156 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
157 )))
158 )))
159
160
161
162 == 2.2  Features ==
163
164 * Arduino Shield base on LA66 LoRaWAN module
165 * Support LoRaWAN v1.0.4 protocol
166 * Support peer-to-peer protocol
167 * TCXO crystal to ensure RF performance on low temperature
168 * SMA connector
169 * Available in different frequency LoRaWAN frequency bands.
170 * World-wide unique OTAA keys.
171 * AT Command via UART-TTL interface
172 * Firmware upgradable via UART interface
173 * Ultra-long RF range
174
175
176
177
178
179 == 2.3  Specification ==
180
181 * CPU: 32-bit 48 MHz
182 * Flash: 256KB
183 * RAM: 64KB
184 * Input Power Range: 1.8v ~~ 3.7v
185 * Power Consumption: < 4uA.
186 * Frequency Range: 150 MHz ~~ 960 MHz
187 * Maximum Power +22 dBm constant RF output
188 * High sensitivity: -148 dBm
189 * Temperature:
190 ** Storage: -55 ~~ +125℃
191 ** Operating: -40 ~~ +85℃
192 * Humidity:
193 ** Storage: 5 ~~ 95% (Non-Condensing)
194 ** Operating: 10 ~~ 95% (Non-Condensing)
195 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
196 * LoRa Rx current: <9 mA
197 * I/O Voltage: 3.3v
198
199
200
201
202
203 == 2.4  LED ==
204
205
206 ~1. The LED lights up red when there is an upstream data packet
207 2. When the network is successfully connected, the green light will be on for 5 seconds
208 3. Purple light on when receiving downlink data packets
209
210
211
212 == 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
213
214
215 **Show connection diagram:**
216
217
218 [[image:image-20220723170210-2.png||height="908" width="681"]]
219
220
221
222 (% style="color:blue" %)**1.  open Arduino IDE**
223
224
225 [[image:image-20220723170545-4.png]]
226
227
228
229 (% style="color:blue" %)**2.  Open project**
230
231
232 LA66-LoRaWAN-shield-AT-command-via-Arduino-UNO source code link: [[https:~~/~~/www.dropbox.com/sh/cx0pspkwu62pr97/AAAbKh2ioPdZfSDtdDpooYqha?dl=0>>https://www.dropbox.com/sh/cx0pspkwu62pr97/AAAbKh2ioPdZfSDtdDpooYqha?dl=0]]
233
234
235
236 (% style="color:blue" %)**3.  Click the button marked 1 in the figure to compile, and after the compilation is complete, click the button marked 2 in the figure to upload**
237
238
239
240 (% style="color:blue" %)**4.  After the upload is successful, open the serial port monitoring and send the AT command**
241
242
243 [[image:image-20220723172235-7.png||height="480" width="1027"]]
244
245
246
247 == 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
248
249
250 (% style="color:blue" %)**1.  Open project**
251
252
253 Join-TTN-network source code link: [[https:~~/~~/www.dropbox.com/sh/0sjyncafa0gjv00/AACC2m1orov-QHRkvH8-ddCka?dl=0>>https://www.dropbox.com/sh/0sjyncafa0gjv00/AACC2m1orov-QHRkvH8-ddCka?dl=0]]
254
255
256 [[image:image-20220723172502-8.png]]
257
258
259
260 (% style="color:blue" %)**2.  Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets**
261
262
263 [[image:image-20220723172938-9.png||height="652" width="1050"]]
264
265
266
267 == 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in Node-RED. ==
268
269
270 (% style="color:blue" %)**1.  Open project**
271
272
273 Log-Temperature-Sensor-and-send-data-to-TTN source code link: [[https:~~/~~/www.dropbox.com/sh/0aagmrpec1lxmva/AABMXWVMSHG9dK1_Zv_7xOmCa?dl=0>>https://www.dropbox.com/sh/0aagmrpec1lxmva/AABMXWVMSHG9dK1_Zv_7xOmCa?dl=0]]
274
275
276 [[image:image-20220723173341-10.png||height="581" width="1014"]]
277
278
279
280 (% style="color:blue" %)**2.  Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets**
281
282
283 [[image:image-20220723173950-11.png||height="665" width="1012"]]
284
285
286
287 (% style="color:blue" %)**3.  Integration into Node-red via TTNV3**
288
289 For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
290
291 [[image:image-20220723175700-12.png||height="602" width="995"]]
292
293
294
295 == 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
296
297
298 === 2.8.1  Items needed for update ===
299
300
301 1. LA66 LoRaWAN Shield
302 1. Arduino
303 1. USB TO TTL Adapter
304
305 [[image:image-20220602100052-2.png||height="385" width="600"]]
306
307
308 === 2.8.2  Connection ===
309
310
311 [[image:image-20220602101311-3.png||height="276" width="600"]]
312
313
314 (((
315 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
316 )))
317
318 (((
319 (% style="background-color:yellow" %)**GND  <-> GND
320 TXD  <->  TXD
321 RXD  <->  RXD**
322 )))
323
324
325 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
326
327 Connect USB TTL Adapter to PC after connecting the wires
328
329
330 [[image:image-20220602102240-4.png||height="304" width="600"]]
331
332
333 === 2.8.3  Upgrade steps ===
334
335
336 ==== (% style="color:blue" %)1.  Switch SW1 to put in ISP position(%%) ====
337
338
339 [[image:image-20220602102824-5.png||height="306" width="600"]]
340
341
342
343 ==== (% style="color:blue" %)2.  Press the RST switch once(%%) ====
344
345
346 [[image:image-20220602104701-12.png||height="285" width="600"]]
347
348
349
350 ==== (% style="color:blue" %)3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade(%%) ====
351
352
353 (((
354 (% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
355 )))
356
357
358 [[image:image-20220602103227-6.png]]
359
360
361 [[image:image-20220602103357-7.png]]
362
363
364
365 (% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
366 (% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
367
368
369 [[image:image-20220602103844-8.png]]
370
371
372
373 (% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
374 (% style="color:blue" %)**3. Select the bin file to burn**
375
376
377 [[image:image-20220602104144-9.png]]
378
379
380 [[image:image-20220602104251-10.png]]
381
382
383 [[image:image-20220602104402-11.png]]
384
385
386
387 (% class="wikigeneratedid" id="HClicktostartthedownload" %)
388 (% style="color:blue" %)**4. Click to start the download**
389
390 [[image:image-20220602104923-13.png]]
391
392
393
394 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
395 (% style="color:blue" %)**5. Check update process**
396
397
398 [[image:image-20220602104948-14.png]]
399
400
401
402 (% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
403 (% style="color:blue" %)**The following picture shows that the burning is successful**
404
405 [[image:image-20220602105251-15.png]]
406
407
408
409 = 3.  LA66 USB LoRaWAN Adapter =
410
411
412 == 3.1  Overview ==
413
414
415 [[image:image-20220715001142-3.png||height="145" width="220"]]
416
417
418 (((
419 (% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
420 )))
421
422 (((
423 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
424 )))
425
426 (((
427 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
428 )))
429
430 (((
431 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
432 )))
433
434 (((
435 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
436 )))
437
438
439
440 == 3.2  Features ==
441
442 * LoRaWAN USB adapter base on LA66 LoRaWAN module
443 * Ultra-long RF range
444 * Support LoRaWAN v1.0.4 protocol
445 * Support peer-to-peer protocol
446 * TCXO crystal to ensure RF performance on low temperature
447 * Spring RF antenna
448 * Available in different frequency LoRaWAN frequency bands.
449 * World-wide unique OTAA keys.
450 * AT Command via UART-TTL interface
451 * Firmware upgradable via UART interface
452 * Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
453
454
455
456 == 3.3  Specification ==
457
458 * CPU: 32-bit 48 MHz
459 * Flash: 256KB
460 * RAM: 64KB
461 * Input Power Range: 5v
462 * Frequency Range: 150 MHz ~~ 960 MHz
463 * Maximum Power +22 dBm constant RF output
464 * High sensitivity: -148 dBm
465 * Temperature:
466 ** Storage: -55 ~~ +125℃
467 ** Operating: -40 ~~ +85℃
468 * Humidity:
469 ** Storage: 5 ~~ 95% (Non-Condensing)
470 ** Operating: 10 ~~ 95% (Non-Condensing)
471 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
472 * LoRa Rx current: <9 mA
473
474
475
476 == 3.4  Pin Mapping & LED ==
477
478
479
480 == 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
481
482
483 (((
484 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
485 )))
486
487
488 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
489
490
491 [[image:image-20220723100027-1.png]]
492
493
494 Open the serial port tool
495
496 [[image:image-20220602161617-8.png]]
497
498 [[image:image-20220602161718-9.png||height="457" width="800"]]
499
500
501
502 (% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
503
504 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
505
506
507 [[image:image-20220602161935-10.png||height="498" width="800"]]
508
509
510
511 (% style="color:blue" %)**3. See Uplink Command**
512
513 Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
514
515 example: AT+SENDB=01,02,8,05820802581ea0a5
516
517 [[image:image-20220602162157-11.png||height="497" width="800"]]
518
519
520
521 (% style="color:blue" %)**4. Check to see if TTN received the message**
522
523 [[image:image-20220602162331-12.png||height="420" width="800"]]
524
525
526
527 == 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
528
529
530 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
531
532 (**Raspberry Pi example: **[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py]])
533
534 (% style="color:red" %)**Preconditions:**
535
536 (% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
537
538 (% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
539
540
541
542 (% style="color:blue" %)**Steps for usage:**
543
544 (% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
545
546 (% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
547
548 [[image:image-20220602115852-3.png||height="450" width="1187"]]
549
550
551
552 == 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
553
554
555 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
556
557
558 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
559
560 [[image:image-20220723100439-2.png]]
561
562
563
564 (% style="color:blue" %)**2. Install Minicom in RPi.**
565
566 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
567
568 (% style="background-color:yellow" %)**apt update**
569
570 (% style="background-color:yellow" %)**apt install minicom**
571
572
573 Use minicom to connect to the RPI's terminal
574
575 [[image:image-20220602153146-3.png||height="439" width="500"]]
576
577
578
579 (% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
580
581 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
582
583
584 [[image:image-20220602154928-5.png||height="436" width="500"]]
585
586
587
588 (% style="color:blue" %)**4. Send Uplink message**
589
590 Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
591
592 example: AT+SENDB=01,02,8,05820802581ea0a5
593
594
595 [[image:image-20220602160339-6.png||height="517" width="600"]]
596
597
598
599 Check to see if TTN received the message
600
601 [[image:image-20220602160627-7.png||height="369" width="800"]]
602
603
604
605 == 3.8  Example: Use of LA66 USB LoRaWAN Adapter and APP sample process and DRAGINO-LA66-APP. ==
606
607
608 === 3.8.1  DRAGINO-LA66-APP ===
609
610
611 [[image:image-20220723102027-3.png]]
612
613
614
615 ==== (% style="color:blue" %)**Overview:**(%%) ====
616
617
618 (((
619 DRAGINO-LA66-APP is a mobile APP for LA66 USB LoRaWAN Adapter and APP sample process. DRAGINO-LA66-APP can obtain the positioning information of the mobile phone and send it to the LoRaWAN platform through the LA66 USB LoRaWAN Adapter.
620 )))
621
622 (((
623 View the communication signal strength between the node and the gateway through the RSSI value(DRAGINO-LA66-APP currently only supports Android system)
624 )))
625
626
627
628 ==== (% style="color:blue" %)**Conditions of Use:**(%%) ====
629
630
631 Requires a type-c to USB adapter
632
633 [[image:image-20220723104754-4.png]]
634
635
636
637 ==== (% style="color:blue" %)**Use of APP:**(%%) ====
638
639
640 Function and page introduction
641
642 [[image:image-20220723113448-7.png||height="1481" width="670"]]
643
644
645 1.Display LA66 USB LoRaWAN Module connection status
646
647 2.Check and reconnect
648
649 3.Turn send timestamps on or off
650
651 4.Display LoRaWan connection status
652
653 5.Check LoRaWan connection status
654
655 6.The RSSI value of the node when the ACK is received
656
657 7.Node's Signal Strength Icon
658
659 8.Set the packet sending interval of the node in seconds
660
661 9.AT command input box
662
663 10.Send AT command button
664
665 11.Node log box
666
667 12.clear log button
668
669 13.exit button
670
671
672 LA66 USB LoRaWAN Module not connected
673
674 [[image:image-20220723110520-5.png||height="903" width="677"]]
675
676
677
678 Connect LA66 USB LoRaWAN Module
679
680 [[image:image-20220723110626-6.png||height="906" width="680"]]
681
682
683
684 === 3.8.2  Use DRAGINO-LA66-APP to obtain positioning information and send it to TTNV3 through LA66 USB LoRaWAN Adapter and integrate it into Node-RED ===
685
686
687 (% style="color:blue" %)**1.  Register LA66 USB LoRaWAN Module to TTNV3**
688
689 [[image:image-20220723134549-8.png]]
690
691
692
693 (% style="color:blue" %)**2.  Open Node-RED,And import the JSON file to generate the flow**
694
695 Sample JSON file please go to this link to download:放置JSON文件的链接
696
697 For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
698
699 The following is the positioning effect map
700
701 [[image:image-20220723144339-1.png]]
702
703
704
705 == 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
706
707
708 The LA66 USB LoRaWAN Adapter is the same as the LA66 LoRaWAN Shield update method
709
710 Just use the yellow jumper cap to short the BOOT corner and the RX corner, and then press the RESET button (without the jumper cap, you can directly short the BOOT corner and the RX corner with a wire to achieve the same effect)
711
712 [[image:image-20220723150132-2.png]]
713
714
715
716 = 4.  Order Info =
717
718
719 **Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
720
721
722 (% style="color:blue" %)**XXX**(%%): The default frequency band
723
724 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
725 * (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
726 * (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
727 * (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
728 * (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
729 * (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
730 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
731 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
732 * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
733
734
735 = 5.  Reference =
736
737
738 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0