<
From version < 64.1 >
edited by Edwin Chen
on 2022/07/02 21:03
To version < 87.5 >
edited by Xiaoling
on 2022/07/13 09:58
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -1,263 +1,442 @@
1 +
2 +
1 1  {{box cssClass="floatinginfobox" title="**Contents**"}}
2 2  {{toc/}}
3 3  {{/box}}
4 4  
5 -= LA66 LoRaWAN Module =
7 +{{toc/}}
6 6  
7 -== What is LA66 LoRaWAN Module ==
8 8  
9 -**Dragino LA66** is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
10 10  
11 -**LA66 **is a ready-to-use module that includes the LoRaWAN v1.0.4 protocol. The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk for developers to make a LoRaWAN End device. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
11 += 1.  LA66 LoRaWAN Module =
12 12  
13 13  
14 -LA66 is equipped with **TCXO crystal** which ensures the module can achieve the stable performance in extreme temperatures.
14 +== 1.1  What is LA66 LoRaWAN Module ==
15 15  
16 16  
17 -**Each LA66 **module includes a world-unique OTAA key for LoRaWAN registration.
17 +(% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
18 18  
19 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
19 19  
21 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
20 20  
21 -== Specification ==
23 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
22 22  
25 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
26 +
27 +
28 +== 1.2  Features ==
29 +
30 +* Support LoRaWAN v1.0.4 protocol
31 +* Support peer-to-peer protocol
32 +* TCXO crystal to ensure RF performance on low temperature
33 +* SMD Antenna pad and i-pex antenna connector
34 +* Available in different frequency LoRaWAN frequency bands.
35 +* World-wide unique OTAA keys.
36 +* AT Command via UART-TTL interface
37 +* Firmware upgradable via UART interface
38 +* Ultra-long RF range
39 +
40 +== 1.3  Specification ==
41 +
42 +* CPU: 32-bit 48 MHz
43 +* Flash: 256KB
44 +* RAM: 64KB
45 +* Input Power Range: 1.8v ~~ 3.7v
46 +* Power Consumption: < 4uA.
47 +* Frequency Range: 150 MHz ~~ 960 MHz
48 +* Maximum Power +22 dBm constant RF output
49 +* High sensitivity: -148 dBm
50 +* Temperature:
51 +** Storage: -55 ~~ +125℃
52 +** Operating: -40 ~~ +85℃
53 +* Humidity:
54 +** Storage: 5 ~~ 95% (Non-Condensing)
55 +** Operating: 10 ~~ 95% (Non-Condensing)
56 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
57 +* LoRa Rx current: <9 mA
58 +* I/O Voltage: 3.3v
59 +
60 +== 1.4  AT Command ==
61 +
62 +AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
63 +
64 +
65 +== 1.5  Dimension ==
66 +
23 23  [[image:image-20220517072526-1.png]]
24 24  
25 -Input Power Range: 1.8v ~~ 3.7v
26 26  
27 -Power Consumption: < 4uA.
28 28  
29 -Frequency Range: 150 MHz ~~ 960 MHz
71 +== 1.6  Pin Mapping ==
30 30  
31 -Maximum Power +22 dBm constant RF output
32 32  
33 -High sensitivity: -148 dBm
74 +[[image:image-20220523101537-1.png]]
34 34  
35 -Temperature:
36 36  
37 -* Storage: -55 ~~ +125℃
38 -* Operating: -40 ~~ +85℃
39 39  
40 -Humidity:
78 +== 1.7  Land Pattern ==
41 41  
42 -* Storage: 5 ~~ 95% (Non-Condensing)
43 -* Operating: 10 ~~ 95% (Non-Condensing)
80 +[[image:image-20220517072821-2.png]]
44 44  
45 -LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
46 46  
47 -LoRa Rx current: <9 mA
48 48  
49 -I/O Voltage: 3.3v
84 += 2.  LA66 LoRaWAN Shield =
50 50  
51 51  
52 -== AT Command ==
87 +== 2.1  Overview ==
53 53  
54 -AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
89 +LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
55 55  
56 56  
57 -== Pin Mapping ==
92 +== 2.2  Features ==
58 58  
59 -[[image:image-20220523101537-1.png]]
94 +* Arduino Shield base on LA66 LoRaWAN module
95 +* Support LoRaWAN v1.0.4 protocol
96 +* Support peer-to-peer protocol
97 +* TCXO crystal to ensure RF performance on low temperature
98 +* SMA connector
99 +* Available in different frequency LoRaWAN frequency bands.
100 +* World-wide unique OTAA keys.
101 +* AT Command via UART-TTL interface
102 +* Firmware upgradable via UART interface
103 +* Ultra-long RF range
60 60  
61 -== Land Pattern ==
105 +== 2.3  Specification ==
62 62  
63 -[[image:image-20220517072821-2.png]]
107 +* CPU: 32-bit 48 MHz
108 +* Flash: 256KB
109 +* RAM: 64KB
110 +* Input Power Range: 1.8v ~~ 3.7v
111 +* Power Consumption: < 4uA.
112 +* Frequency Range: 150 MHz ~~ 960 MHz
113 +* Maximum Power +22 dBm constant RF output
114 +* High sensitivity: -148 dBm
115 +* Temperature:
116 +** Storage: -55 ~~ +125℃
117 +** Operating: -40 ~~ +85℃
118 +* Humidity:
119 +** Storage: 5 ~~ 95% (Non-Condensing)
120 +** Operating: 10 ~~ 95% (Non-Condensing)
121 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
122 +* LoRa Rx current: <9 mA
123 +* I/O Voltage: 3.3v
64 64  
125 +== 2.4  Pin Mapping & LED ==
65 65  
66 -== Part Number ==
67 67  
68 -Part Number: **LA66-XXX**
69 69  
70 -**XX**: The default frequency band
129 +== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
71 71  
72 -* **AS923**: LoRaWAN AS923 band
73 -* **AU915**: LoRaWAN AU915 band
74 -* **EU433**: LoRaWAN EU433 band
75 -* **EU868**: LoRaWAN EU868 band
76 -* **KR920**: LoRaWAN KR920 band
77 -* **US915**: LoRaWAN US915 band
78 -* **IN865**: LoRaWAN IN865 band
79 -* **CN470**: LoRaWAN CN470 band
80 80  
81 -= LA66 LoRaWAN Shield =
82 82  
83 -LA66 LoRaWAN Shield is the Arduino Breakout PCB to fast test the features of LA66 module and turn Arduino to support LoRaWAN.
133 +== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
84 84  
85 -== Pin Mapping & LED ==
86 86  
87 -== Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
88 88  
89 -== Example: Join TTN network and send an uplink message, get downlink message. ==
137 +== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
90 90  
91 -== Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
92 92  
93 -== Upgrade Firmware of LA66 LoRaWAN Shield ==
94 94  
95 -=== what needs to be used ===
141 +== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
96 96  
97 -1.LA66 LoRaWAN Shield that needs to be upgraded
98 98  
99 -2.Arduino
144 +=== 2.8.1  Items needed for update ===
100 100  
101 -3.USB TO TTL
146 +1. LA66 LoRaWAN Shield
147 +1. Arduino
148 +1. USB TO TTL Adapter
102 102  
103 -[[image:image-20220602100052-2.png]]
150 +[[image:image-20220602100052-2.png||height="385" width="600"]]
104 104  
105 -=== Wiring Schematic ===
106 106  
107 -[[image:image-20220602101311-3.png]]
153 +=== 2.8.2  Connection ===
108 108  
109 -LA66 LoRaWAN Shield  >>>>>>>>>>>>USB TTL
110 110  
111 -GND  >>>>>>>>>>>>GND
156 +[[image:image-20220602101311-3.png||height="276" width="600"]]
112 112  
113 -TXD  >>>>>>>>>>>>TXD
114 114  
115 -RXD  >>>>>>>>>>>>RXD
159 +(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
116 116  
117 -JP6 of LA66 LoRaWAN Shield needs to be connected with yellow jumper cap
118 118  
119 -Connect to the PC after connecting the wires
162 +(% style="background-color:yellow" %)**GND  <-> GND
163 +TXD  <->  TXD
164 +RXD  <->  RXD**
120 120  
121 -[[image:image-20220602102240-4.png]]
122 122  
123 -=== Upgrade steps ===
167 +Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
124 124  
125 -==== Dial the SW1 of the LA66 LoRaWAN Shield to the ISP's location as shown in the figure below ====
169 +Connect USB TTL Adapter to PC after connecting the wires
126 126  
127 -[[image:image-20220602102824-5.png]]
128 128  
129 -==== Press the RST switch on the LA66 LoRaWAN Shield once ====
172 +[[image:image-20220602102240-4.png||height="304" width="600"]]
130 130  
131 -[[image:image-20220602104701-12.png]]
132 132  
133 -==== Open the upgrade application software ====
175 +=== 2.8.3  Upgrade steps ===
134 134  
135 -Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]
136 136  
178 +==== 1.  Switch SW1 to put in ISP position ====
179 +
180 +
181 +[[image:image-20220602102824-5.png||height="306" width="600"]]
182 +
183 +
184 +==== 2.  Press the RST switch once ====
185 +
186 +[[image:image-20220602104701-12.png||height="285" width="600"]]
187 +
188 +
189 +==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
190 +
191 +
192 +(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
193 +
194 +
137 137  [[image:image-20220602103227-6.png]]
138 138  
197 +
139 139  [[image:image-20220602103357-7.png]]
140 140  
141 -===== Select the COM port corresponding to USB TTL =====
142 142  
201 +
202 +(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
203 +(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
204 +
205 +
143 143  [[image:image-20220602103844-8.png]]
144 144  
145 -===== Select the bin file to burn =====
146 146  
209 +
210 +(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
211 +(% style="color:blue" %)**3. Select the bin file to burn**
212 +
213 +
147 147  [[image:image-20220602104144-9.png]]
148 148  
216 +
149 149  [[image:image-20220602104251-10.png]]
150 150  
219 +
151 151  [[image:image-20220602104402-11.png]]
152 152  
153 -===== Click to start the download =====
154 154  
223 +
224 +(% class="wikigeneratedid" id="HClicktostartthedownload" %)
225 +(% style="color:blue" %)**4. Click to start the download**
226 +
155 155  [[image:image-20220602104923-13.png]]
156 156  
157 -===== The following figure appears to prove that the burning is in progress =====
158 158  
230 +(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
231 +(% style="color:blue" %)**5. Check update process**
232 +
233 +
159 159  [[image:image-20220602104948-14.png]]
160 160  
161 -===== The following picture appears to prove that the burning is successful =====
162 162  
237 +
238 +(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
239 +(% style="color:blue" %)**The following picture shows that the burning is successful**
240 +
163 163  [[image:image-20220602105251-15.png]]
164 164  
165 -= LA66 USB LoRaWAN Adapter =
166 166  
167 -LA66 USB LoRaWAN Adapter is the USB Adapter for LA66, it combines a USB TTL Chip and LA66 module which can easy to test the LoRaWAN feature by using PC or embedded device which has USB Interface.
168 168  
169 -Before use, please make sure that the computer has installed the CP2102 driver
245 += 3.  LA66 USB LoRaWAN Adapter =
170 170  
171 -== Pin Mapping & LED ==
172 172  
173 -== Example Send & Get Messages via LoRaWAN in PC ==
248 +== 3.1  Overview ==
174 174  
175 -Connect the LA66 LoRa Shield to the PC
250 +LA66 USB LoRaWAN Adapter is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
176 176  
177 -[[image:image-20220602171217-1.png||height="615" width="915"]]
178 178  
253 +== 3.2  Features ==
254 +
255 +* LoRaWAN USB adapter base on LA66 LoRaWAN module
256 +* Ultra-long RF range
257 +* Support LoRaWAN v1.0.4 protocol
258 +* Support peer-to-peer protocol
259 +* TCXO crystal to ensure RF performance on low temperature
260 +* Spring RF antenna
261 +* Available in different frequency LoRaWAN frequency bands.
262 +* World-wide unique OTAA keys.
263 +* AT Command via UART-TTL interface
264 +* Firmware upgradable via UART interface
265 +
266 +== 3.3  Specification ==
267 +
268 +* CPU: 32-bit 48 MHz
269 +* Flash: 256KB
270 +* RAM: 64KB
271 +* Input Power Range: 5v
272 +* Frequency Range: 150 MHz ~~ 960 MHz
273 +* Maximum Power +22 dBm constant RF output
274 +* High sensitivity: -148 dBm
275 +* Temperature:
276 +** Storage: -55 ~~ +125℃
277 +** Operating: -40 ~~ +85℃
278 +* Humidity:
279 +** Storage: 5 ~~ 95% (Non-Condensing)
280 +** Operating: 10 ~~ 95% (Non-Condensing)
281 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
282 +* LoRa Rx current: <9 mA
283 +
284 +== 3.4  Pin Mapping & LED ==
285 +
286 +
287 +
288 +== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
289 +
290 +
291 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
292 +
293 +
294 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
295 +
296 +
297 +[[image:image-20220602171217-1.png||height="538" width="800"]]
298 +
299 +
179 179  Open the serial port tool
180 180  
181 181  [[image:image-20220602161617-8.png]]
182 182  
183 -[[image:image-20220602161718-9.png||height="529" width="927"]]
304 +[[image:image-20220602161718-9.png||height="457" width="800"]]
184 184  
185 -Press the reset switch RST on the LA66 LoRa Shield.
186 186  
187 -The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
188 188  
189 -[[image:image-20220602161935-10.png]]
308 +(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
190 190  
191 -send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
310 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
192 192  
312 +
313 +[[image:image-20220602161935-10.png||height="498" width="800"]]
314 +
315 +
316 +
317 +(% style="color:blue" %)**3. See Uplink Command**
318 +
319 +Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
320 +
193 193  example: AT+SENDB=01,02,8,05820802581ea0a5
194 194  
195 -[[image:image-20220602162157-11.png]]
323 +[[image:image-20220602162157-11.png||height="497" width="800"]]
196 196  
197 -Check to see if TTN received the message
198 198  
199 -[[image:image-20220602162331-12.png||height="547" width="1044"]]
200 200  
201 -== Example Send & Get Messages via LoRaWAN in RPi ==
327 +(% style="color:blue" %)**4. Check to see if TTN received the message**
202 202  
203 -Connect the LA66 LoRa Shield to the RPI
329 +[[image:image-20220602162331-12.png||height="420" width="800"]]
204 204  
205 -[[image:image-20220602171233-2.png||height="592" width="881"]]
206 206  
207 -Log in to the RPI's terminal and connect to the serial port
208 208  
209 -[[image:image-20220602153146-3.png]]
333 +== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
210 210  
211 -Press the reset switch RST on the LA66 LoRa Shield.
212 -The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
213 213  
214 -[[image:image-20220602154928-5.png]]
336 +**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
215 215  
216 -send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
217 217  
339 +(% style="color:red" %)**Preconditions:**
340 +
341 +(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
342 +
343 +(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
344 +
345 +
346 +
347 +(% style="color:blue" %)**Steps for usage:**
348 +
349 +(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
350 +
351 +(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
352 +
353 +[[image:image-20220602115852-3.png||height="450" width="1187"]]
354 +
355 +
356 +
357 +== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
358 +
359 +
360 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
361 +
362 +
363 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
364 +
365 +[[image:image-20220602171233-2.png||height="538" width="800"]]
366 +
367 +
368 +
369 +(% style="color:blue" %)**2. Install Minicom in RPi.**
370 +
371 +(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
372 +
373 + (% style="background-color:yellow" %)**apt update**
374 +
375 + (% style="background-color:yellow" %)**apt install minicom**
376 +
377 +
378 +Use minicom to connect to the RPI's terminal
379 +
380 +[[image:image-20220602153146-3.png||height="439" width="500"]]
381 +
382 +
383 +
384 +(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**(%%)
385 +(% style="color:blue" %)The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network
386 +
387 +[[image:image-20220602154928-5.png||height="436" width="500"]]
388 +
389 +
390 +
391 +(% style="color:blue" %)**4. Send Uplink message**
392 +
393 +Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
394 +
218 218  example: AT+SENDB=01,02,8,05820802581ea0a5
219 219  
220 -[[image:image-20220602160339-6.png]]
221 221  
398 +[[image:image-20220602160339-6.png||height="517" width="600"]]
399 +
400 +
401 +
222 222  Check to see if TTN received the message
223 223  
224 -[[image:image-20220602160627-7.png||height="468" width="1013"]]
404 +[[image:image-20220602160627-7.png||height="369" width="800"]]
225 225  
226 -=== Install Minicom ===
227 227  
228 -Enter the following command in the RPI terminal
229 229  
230 -apt update
408 +== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
231 231  
232 -[[image:image-20220602143155-1.png]]
233 233  
234 -apt install minicom
235 235  
236 -[[image:image-20220602143744-2.png]]
412 +== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
237 237  
238 -=== Send PC's CPU/RAM usage to TTN via script. ===
239 239  
240 -==== Take python as an example: ====
241 241  
242 -===== Preconditions: =====
243 243  
244 -1.LA66 USB LoRaWAN Adapter works fine
417 += 4.  Order Info =
245 245  
246 -2.LA66 USB LoRaWAN Adapter  is registered with TTN
247 247  
248 -===== Steps for usage =====
420 +**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
249 249  
250 -1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
251 251  
252 -2.Run the script and see the TTN
423 +(% style="color:blue" %)**XXX**(%%): The default frequency band
253 253  
254 -[[image:image-20220602115852-3.png]]
425 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
426 +* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
427 +* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
428 +* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
429 +* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
430 +* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
431 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
432 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
433 +* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
255 255  
256 256  
257 257  
258 -== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
259 259  
438 += 5.  Reference =
260 260  
261 -== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
440 +* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
262 262  
263 263  
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0