<
From version < 137.4 >
edited by Xiaoling
on 2022/07/29 09:17
To version < 148.6 >
edited by Xiaoling
on 2022/10/10 11:31
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LA66 LoRaWAN Module
1 +LA66 LoRaWAN Module User Manual
Content
... ... @@ -52,7 +52,8 @@
52 52  
53 53  == 1.2  Features ==
54 54  
55 -* Support LoRaWAN v1.0.4 protocol
55 +
56 +* Support LoRaWAN v1.0.3 protocol
56 56  * Support peer-to-peer protocol
57 57  * TCXO crystal to ensure RF performance on low temperature
58 58  * SMD Antenna pad and i-pex antenna connector
... ... @@ -62,8 +62,10 @@
62 62  * Firmware upgradable via UART interface
63 63  * Ultra-long RF range
64 64  
66 +
65 65  == 1.3  Specification ==
66 66  
69 +
67 67  * CPU: 32-bit 48 MHz
68 68  * Flash: 256KB
69 69  * RAM: 64KB
... ... @@ -82,15 +82,17 @@
82 82  * LoRa Rx current: <9 mA
83 83  * I/O Voltage: 3.3v
84 84  
88 +
85 85  == 1.4  AT Command ==
86 86  
87 87  
88 -AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
92 +AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in[[ AT Command documents>>https://www.dropbox.com/sh/wtq43za8sykpgta/AABAEE02uEAsRU-JV7bzEhMba?dl=0]].
89 89  
90 90  
91 91  
92 92  == 1.5  Dimension ==
93 93  
98 +
94 94  [[image:image-20220718094750-3.png]]
95 95  
96 96  
... ... @@ -103,627 +103,85 @@
103 103  
104 104  == 1.7  Land Pattern ==
105 105  
111 +
106 106  [[image:image-20220517072821-2.png]]
107 107  
108 108  
109 109  
110 -= 2.  LA66 LoRaWAN Shield =
116 += 2.  FAQ =
111 111  
112 112  
113 -== 2.1  Overview ==
119 +== 2.1  How to Compile Source Code for LA66? ==
114 114  
115 115  
116 -(((
117 -[[image:image-20220715000826-2.png||height="145" width="220"]]
118 -)))
122 +Compile and Upload Code to ASR6601 Platform:[[Instruction>>Compile and Upload Code to ASR6601 Platform]]
119 119  
120 -(((
121 -
122 -)))
123 123  
124 -(((
125 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
126 -)))
127 127  
128 -(((
129 -(((
130 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
131 -)))
132 -)))
126 +== 2.2 Can i use LA66 module's internal I/O without external MCU, So to save product cost? ==
133 133  
134 -(((
135 -(((
136 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
137 -)))
138 -)))
139 139  
140 -(((
141 -(((
142 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
143 -)))
144 -)))
129 +Yes, this is possible, user can refer[[ the source code from ASR >>https://github.com/asrlora/asr_lora_6601/tree/master/projects/ASR6601SE-EVAL/examples/lora]]to get examples for how to its I/O Interfaces.
145 145  
146 -(((
147 -(((
148 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
149 -)))
150 -)))
151 151  
152 152  
133 +== 2.3  Where to find Peer-to-Peer firmware of LA66? ==
153 153  
154 -== 2.2  Features ==
155 155  
156 -* Arduino Shield base on LA66 LoRaWAN module
157 -* Support LoRaWAN v1.0.4 protocol
158 -* Support peer-to-peer protocol
159 -* TCXO crystal to ensure RF performance on low temperature
160 -* SMA connector
161 -* Available in different frequency LoRaWAN frequency bands.
162 -* World-wide unique OTAA keys.
163 -* AT Command via UART-TTL interface
164 -* Firmware upgradable via UART interface
165 -* Ultra-long RF range
136 +Instruction for LA66 Peer to Peer firmware :[[ Instruction >>doc:Main.User Manual for LoRaWAN End Nodes.LA66 LoRaWAN Shield User Manual.Instruction for LA66 Peer to Peer firmware.WebHome]]
166 166  
167 -== 2.3  Specification ==
168 168  
169 -* CPU: 32-bit 48 MHz
170 -* Flash: 256KB
171 -* RAM: 64KB
172 -* Input Power Range: 1.8v ~~ 3.7v
173 -* Power Consumption: < 4uA.
174 -* Frequency Range: 150 MHz ~~ 960 MHz
175 -* Maximum Power +22 dBm constant RF output
176 -* High sensitivity: -148 dBm
177 -* Temperature:
178 -** Storage: -55 ~~ +125℃
179 -** Operating: -40 ~~ +85℃
180 -* Humidity:
181 -** Storage: 5 ~~ 95% (Non-Condensing)
182 -** Operating: 10 ~~ 95% (Non-Condensing)
183 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
184 -* LoRa Rx current: <9 mA
185 -* I/O Voltage: 3.3v
186 186  
187 -== 2.4  LED ==
140 += 3Order Info =
188 188  
189 189  
190 -~1. The LED lights up red when there is an upstream data packet
191 -2. When the network is successfully connected, the green light will be on for 5 seconds
192 -3. Purple light on when receiving downlink data packets
143 +**Part Number:**  (% style="color:blue" %)**LA66-XXX**
193 193  
194 194  
146 +(% style="color:blue" %)**XXX**(%%): The default frequency band
195 195  
196 -== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
148 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
149 +* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
150 +* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
151 +* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
152 +* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
153 +* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
154 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
155 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
156 +* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
197 197  
198 198  
199 -**Show connection diagram:**
200 200  
160 += 4.  FCC Statement =
201 201  
202 -[[image:image-20220723170210-2.png||height="908" width="681"]]
203 203  
163 +**(% style="color:red" %)FCC Caution:**
204 204  
205 205  
206 -(% style="color:blue" %)**1.  open Arduino IDE**
166 +Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
207 207  
208 208  
209 -[[image:image-20220723170545-4.png]]
169 +This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
210 210  
211 211  
172 +**(% style="color:red" %)IMPORTANT NOTE: **
212 212  
213 -(% style="color:blue" %)**2.  Open project**
214 214  
175 +Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
215 215  
216 -LA66-LoRaWAN-shield-AT-command-via-Arduino-UNO source code link: [[https:~~/~~/www.dropbox.com/sh/cx0pspkwu62pr97/AAAbKh2ioPdZfSDtdDpooYqha?dl=0>>https://www.dropbox.com/sh/cx0pspkwu62pr97/AAAbKh2ioPdZfSDtdDpooYqha?dl=0]]
217 217  
218 -[[image:image-20220726135239-1.png]]
178 +—Reorient or relocate the receiving antenna.
219 219  
220 220  
221 -(% style="color:blue" %)**3.  Click the button marked 1 in the figure to compile, and after the compilation is complete, click the button marked 2 in the figure to upload**
181 +—Increase the separation between the equipment and receiver.
222 222  
223 -[[image:image-20220726135356-2.png]]
224 224  
184 +—Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
225 225  
226 -(% style="color:blue" %)**4.  After the upload is successful, open the serial port monitoring and send the AT command**
227 227  
187 +—Consult the dealer or an experienced radio/TV technician for help.
228 228  
229 -[[image:image-20220723172235-7.png||height="480" width="1027"]]
230 230  
190 +**(% style="color:red" %)FCC Radiation Exposure Statement: **
231 231  
232 -
233 -== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
234 -
235 -
236 -(% style="color:blue" %)**1.  Open project**
237 -
238 -
239 -Join-TTN-network source code link: [[https:~~/~~/www.dropbox.com/sh/0sjyncafa0gjv00/AACC2m1orov-QHRkvH8-ddCka?dl=0>>https://www.dropbox.com/sh/0sjyncafa0gjv00/AACC2m1orov-QHRkvH8-ddCka?dl=0]]
240 -
241 -
242 -[[image:image-20220723172502-8.png]]
243 -
244 -
245 -
246 -(% style="color:blue" %)**2.  Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets**
247 -
248 -
249 -[[image:image-20220723172938-9.png||height="652" width="1050"]]
250 -
251 -
252 -
253 -== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in Node-RED. ==
254 -
255 -
256 -(% style="color:blue" %)**1.  Open project**
257 -
258 -
259 -Log-Temperature-Sensor-and-send-data-to-TTN source code link: [[https:~~/~~/www.dropbox.com/sh/0aagmrpec1lxmva/AABMXWVMSHG9dK1_Zv_7xOmCa?dl=0>>https://www.dropbox.com/sh/0aagmrpec1lxmva/AABMXWVMSHG9dK1_Zv_7xOmCa?dl=0]]
260 -
261 -
262 -[[image:image-20220723173341-10.png||height="581" width="1014"]]
263 -
264 -
265 -
266 -(% style="color:blue" %)**2.  Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets**
267 -
268 -
269 -[[image:image-20220723173950-11.png||height="665" width="1012"]]
270 -
271 -
272 -
273 -(% style="color:blue" %)**3.  Integration into Node-red via TTNV3**
274 -
275 -For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
276 -
277 -[[image:image-20220723175700-12.png||height="602" width="995"]]
278 -
279 -
280 -
281 -== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
282 -
283 -
284 -=== 2.8.1  Items needed for update ===
285 -
286 -
287 -1. LA66 LoRaWAN Shield
288 -1. Arduino
289 -1. USB TO TTL Adapter
290 -
291 -[[image:image-20220602100052-2.png||height="385" width="600"]]
292 -
293 -
294 -=== 2.8.2  Connection ===
295 -
296 -
297 -[[image:image-20220602101311-3.png||height="276" width="600"]]
298 -
299 -
300 -(((
301 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
302 -)))
303 -
304 -(((
305 -(% style="background-color:yellow" %)**GND  <-> GND
306 -TXD  <->  TXD
307 -RXD  <->  RXD**
308 -)))
309 -
310 -
311 -Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
312 -
313 -Connect USB TTL Adapter to PC after connecting the wires
314 -
315 -
316 -[[image:image-20220602102240-4.png||height="304" width="600"]]
317 -
318 -
319 -=== 2.8.3  Upgrade steps ===
320 -
321 -
322 -==== (% style="color:blue" %)1.  Switch SW1 to put in ISP position(%%) ====
323 -
324 -
325 -[[image:image-20220602102824-5.png||height="306" width="600"]]
326 -
327 -
328 -
329 -==== (% style="color:blue" %)2.  Press the RST switch once(%%) ====
330 -
331 -
332 -[[image:image-20220602104701-12.png||height="285" width="600"]]
333 -
334 -
335 -
336 -==== (% style="color:blue" %)3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade(%%) ====
337 -
338 -
339 -(((
340 -(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
341 -)))
342 -
343 -
344 -[[image:image-20220602103227-6.png]]
345 -
346 -
347 -[[image:image-20220602103357-7.png]]
348 -
349 -
350 -
351 -(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
352 -(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
353 -
354 -
355 -[[image:image-20220602103844-8.png]]
356 -
357 -
358 -
359 -(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
360 -(% style="color:blue" %)**3. Select the bin file to burn**
361 -
362 -
363 -[[image:image-20220602104144-9.png]]
364 -
365 -
366 -[[image:image-20220602104251-10.png]]
367 -
368 -
369 -[[image:image-20220602104402-11.png]]
370 -
371 -
372 -
373 -(% class="wikigeneratedid" id="HClicktostartthedownload" %)
374 -(% style="color:blue" %)**4. Click to start the download**
375 -
376 -[[image:image-20220602104923-13.png]]
377 -
378 -
379 -
380 -(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
381 -(% style="color:blue" %)**5. Check update process**
382 -
383 -
384 -[[image:image-20220602104948-14.png]]
385 -
386 -
387 -
388 -(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
389 -(% style="color:blue" %)**The following picture shows that the burning is successful**
390 -
391 -[[image:image-20220602105251-15.png]]
392 -
393 -
394 -
395 -= 3.  LA66 USB LoRaWAN Adapter =
396 -
397 -
398 -== 3.1  Overview ==
399 -
400 -
401 -[[image:image-20220715001142-3.png||height="145" width="220"]]
402 -
403 -
404 -(((
405 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
406 -)))
407 -
408 -(((
409 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
410 -)))
411 -
412 -(((
413 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
414 -)))
415 -
416 -(((
417 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
418 -)))
419 -
420 -(((
421 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
422 -)))
423 -
424 -
425 -
426 -== 3.2  Features ==
427 -
428 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
429 -* Ultra-long RF range
430 -* Support LoRaWAN v1.0.4 protocol
431 -* Support peer-to-peer protocol
432 -* TCXO crystal to ensure RF performance on low temperature
433 -* Spring RF antenna
434 -* Available in different frequency LoRaWAN frequency bands.
435 -* World-wide unique OTAA keys.
436 -* AT Command via UART-TTL interface
437 -* Firmware upgradable via UART interface
438 -* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
439 -
440 -== 3.3  Specification ==
441 -
442 -* CPU: 32-bit 48 MHz
443 -* Flash: 256KB
444 -* RAM: 64KB
445 -* Input Power Range: 5v
446 -* Frequency Range: 150 MHz ~~ 960 MHz
447 -* Maximum Power +22 dBm constant RF output
448 -* High sensitivity: -148 dBm
449 -* Temperature:
450 -** Storage: -55 ~~ +125℃
451 -** Operating: -40 ~~ +85℃
452 -* Humidity:
453 -** Storage: 5 ~~ 95% (Non-Condensing)
454 -** Operating: 10 ~~ 95% (Non-Condensing)
455 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
456 -* LoRa Rx current: <9 mA
457 -
458 -== 3.4  Pin Mapping & LED ==
459 -
460 -
461 -
462 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
463 -
464 -
465 -(((
466 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
467 -)))
468 -
469 -
470 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
471 -
472 -
473 -[[image:image-20220723100027-1.png]]
474 -
475 -
476 -Open the serial port tool
477 -
478 -[[image:image-20220602161617-8.png]]
479 -
480 -[[image:image-20220602161718-9.png||height="457" width="800"]]
481 -
482 -
483 -
484 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
485 -
486 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
487 -
488 -
489 -[[image:image-20220602161935-10.png||height="498" width="800"]]
490 -
491 -
492 -
493 -(% style="color:blue" %)**3. See Uplink Command**
494 -
495 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
496 -
497 -example: AT+SENDB=01,02,8,05820802581ea0a5
498 -
499 -[[image:image-20220602162157-11.png||height="497" width="800"]]
500 -
501 -
502 -
503 -(% style="color:blue" %)**4. Check to see if TTN received the message**
504 -
505 -[[image:image-20220602162331-12.png||height="420" width="800"]]
506 -
507 -
508 -
509 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
510 -
511 -
512 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
513 -
514 -(**Raspberry Pi example: **[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py]])
515 -
516 -(% style="color:red" %)**Preconditions:**
517 -
518 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
519 -
520 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
521 -
522 -
523 -
524 -(% style="color:blue" %)**Steps for usage:**
525 -
526 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
527 -
528 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
529 -
530 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
531 -
532 -
533 -
534 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
535 -
536 -
537 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
538 -
539 -
540 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
541 -
542 -[[image:image-20220723100439-2.png]]
543 -
544 -
545 -
546 -(% style="color:blue" %)**2. Install Minicom in RPi.**
547 -
548 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
549 -
550 - (% style="background-color:yellow" %)**apt update**
551 -
552 - (% style="background-color:yellow" %)**apt install minicom**
553 -
554 -
555 -Use minicom to connect to the RPI's terminal
556 -
557 -[[image:image-20220602153146-3.png||height="439" width="500"]]
558 -
559 -
560 -
561 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
562 -
563 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
564 -
565 -
566 -[[image:image-20220602154928-5.png||height="436" width="500"]]
567 -
568 -
569 -
570 -(% style="color:blue" %)**4. Send Uplink message**
571 -
572 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
573 -
574 -example: AT+SENDB=01,02,8,05820802581ea0a5
575 -
576 -
577 -[[image:image-20220602160339-6.png||height="517" width="600"]]
578 -
579 -
580 -
581 -Check to see if TTN received the message
582 -
583 -[[image:image-20220602160627-7.png||height="369" width="800"]]
584 -
585 -
586 -
587 -== 3.8  Example: Use of LA66 USB LoRaWAN Adapter and APP sample process and DRAGINO-LA66-APP. ==
588 -
589 -
590 -=== 3.8.1  DRAGINO-LA66-APP ===
591 -
592 -
593 -[[image:image-20220723102027-3.png]]
594 -
595 -
596 -
597 -==== (% style="color:blue" %)**Overview:**(%%) ====
598 -
599 -
600 -(((
601 -DRAGINO-LA66-APP is a mobile APP for LA66 USB LoRaWAN Adapter and APP sample process. DRAGINO-LA66-APP can obtain the positioning information of the mobile phone and send it to the LoRaWAN platform through the LA66 USB LoRaWAN Adapter.
602 -)))
603 -
604 -(((
605 -View the communication signal strength between the node and the gateway through the RSSI value(DRAGINO-LA66-APP currently only supports Android system)
606 -)))
607 -
608 -
609 -
610 -==== (% style="color:blue" %)**Conditions of Use:**(%%) ====
611 -
612 -
613 -Requires a type-c to USB adapter
614 -
615 -[[image:image-20220723104754-4.png]]
616 -
617 -
618 -
619 -==== (% style="color:blue" %)**Use of APP:**(%%) ====
620 -
621 -
622 -Function and page introduction
623 -
624 -[[image:image-20220723113448-7.png||height="1481" width="670"]]
625 -
626 -
627 -1.Display LA66 USB LoRaWAN Module connection status
628 -
629 -2.Check and reconnect
630 -
631 -3.Turn send timestamps on or off
632 -
633 -4.Display LoRaWan connection status
634 -
635 -5.Check LoRaWan connection status
636 -
637 -6.The RSSI value of the node when the ACK is received
638 -
639 -7.Node's Signal Strength Icon
640 -
641 -8.Set the packet sending interval of the node in seconds
642 -
643 -9.AT command input box
644 -
645 -10.Send AT command button
646 -
647 -11.Node log box
648 -
649 -12.clear log button
650 -
651 -13.exit button
652 -
653 -
654 -LA66 USB LoRaWAN Module not connected
655 -
656 -[[image:image-20220723110520-5.png||height="903" width="677"]]
657 -
658 -
659 -
660 -Connect LA66 USB LoRaWAN Module
661 -
662 -[[image:image-20220723110626-6.png||height="906" width="680"]]
663 -
664 -
665 -
666 -=== 3.8.2  Use DRAGINO-LA66-APP to obtain positioning information and send it to TTNV3 through LA66 USB LoRaWAN Adapter and integrate it into Node-RED ===
667 -
668 -
669 -(% style="color:blue" %)**1.  Register LA66 USB LoRaWAN Module to TTNV3**
670 -
671 -[[image:image-20220723134549-8.png]]
672 -
673 -
674 -
675 -(% style="color:blue" %)**2.  Open Node-RED,And import the JSON file to generate the flow**
676 -
677 -Sample JSON file please go to this link to download:放置JSON文件的链接
678 -
679 -For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
680 -
681 -The following is the positioning effect map
682 -
683 -[[image:image-20220723144339-1.png]]
684 -
685 -
686 -
687 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
688 -
689 -
690 -The LA66 USB LoRaWAN Adapter is the same as the LA66 LoRaWAN Shield update method
691 -
692 -Just use the yellow jumper cap to short the BOOT corner and the RX corner, and then press the RESET button (without the jumper cap, you can directly short the BOOT corner and the RX corner with a wire to achieve the same effect)
693 -
694 -[[image:image-20220723150132-2.png]]
695 -
696 -
697 -
698 -= 4.  FAQ =
699 -
700 -
701 -== 4.1  How to Compile Source Code for LA66? ==
702 -
703 -
704 -Compile and Upload Code to ASR6601 Platform :[[Instruction>>Compile and Upload Code to ASR6601 Platform]]
705 -
706 -
707 -
708 -= 5.  Order Info =
709 -
710 -
711 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
712 -
713 -
714 -(% style="color:blue" %)**XXX**(%%): The default frequency band
715 -
716 -* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
717 -* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
718 -* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
719 -* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
720 -* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
721 -* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
722 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
723 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
724 -* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
725 -
726 -= 6.  Reference =
727 -
728 -
729 -* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
192 +This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
image-20220813173738-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +13.2 KB
Content
image-20220813174353-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +189.1 KB
Content
image-20220813183239-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +642.4 KB
Content
image-20220814101457-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +913.4 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0