Version 82.2 by Xiaoling on 2022/06/24 18:01

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82
83
84 == 2.2 How it works? ==
85
86 (((
87 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
88 )))
89
90
91 (((
92 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
93 )))
94
95 [[image:1656042192857-709.png]]
96
97
98 (% style="color:red" %)**Notice:**
99
100 1. WSC1-L will auto scan available weather sensors when power on or reboot.
101 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
102
103
104
105
106
107 == 2.3 Example to use for LoRaWAN network ==
108
109 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
110
111
112 [[image:1656042612899-422.png]]
113
114
115
116 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
117
118
119 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
120
121 Each WSC1-L is shipped with a sticker with the default device EUI as below:
122
123 [[image:image-20220624115043-1.jpeg]]
124
125
126 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156
157
158 == 2.4 Uplink Payload ==
159
160 Uplink payloads include two types: Valid Sensor Value and other status / control command.
161
162 * Valid Sensor Value: Use FPORT=2
163 * Other control command: Use FPORT other than 2.
164
165
166
167
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 (((
175 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
176 )))
177
178 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
179 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
180 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
181
182 [[image:1656043061044-343.png]]
183
184
185 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
186
187
188
189 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
190
191 For WSC1-L, this value is 0x0D.
192
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197 0x0100, Means: v1.0.0 version.
198
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224
225 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
226
227 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
228
229
230
231 ==== (% style="color:#037691" %)**BAT:**(%%) ====
232
233 (((
234 shows the battery voltage for WSC1-L MCU.
235 )))
236
237 (((
238 Ex1: 0x0BD6/1000 = 3.03 V
239 )))
240
241
242
243 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
244
245 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
246 |Byte3|Byte2|Byte1
247
248 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
249
250 [[image:image-20220624134713-1.png]]
251
252
253 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
254
255 External sensors detected by WSC1-L include :
256
257 custom sensor A1,
258
259 PAR sensor (WSS-07),
260
261 Total Solar Radiation sensor (WSS-06),
262
263 CO2/PM2.5/PM10 (WSS-03),
264
265 Wind Speed/Direction (WSS-02)
266
267
268 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
269
270 (% style="color:#037691" %)**Downlink:0x26 01**
271
272 [[image:1656049673488-415.png]]
273
274
275
276 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
277
278 (((
279 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
280 )))
281
282 (((
283 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
284 )))
285
286
287 (((
288 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
289 )))
290
291
292 (% style="color:#4472c4" %)** Uplink Payload**:
293
294 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
295 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
296
297 (% style="color:#4472c4" %)** Sensor Segment Define**:
298
299 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
300 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
301
302 (% style="color:#4472c4" %)**Sensor Type Table:**
303
304 [[image:image-20220624140352-2.png]]
305
306
307 (((
308 Below is an example payload:  [[image:image-20220624140615-3.png]]
309 )))
310
311 (((
312
313 )))
314
315 (((
316 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
317 )))
318
319 * (((
320 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
321 )))
322
323 (((
324 Uplink 1:  [[image:image-20220624140735-4.png]]
325 )))
326
327 (((
328
329 )))
330
331 (((
332 Uplink 2:  [[image:image-20220624140842-5.png]]
333 )))
334
335 (((
336
337 )))
338
339 * (((
340 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
341 )))
342
343 (((
344 Uplink 1:  [[image:image-20220624141025-6.png]]
345 )))
346
347 (((
348
349 )))
350
351 Uplink 2:  [[image:image-20220624141100-7.png]]
352
353
354
355
356 === 2.4.3 Decoder in TTN V3 ===
357
358 (((
359 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
360 )))
361
362 (((
363
364 )))
365
366 (((
367 Download decoder for suitable platform from:
368 )))
369
370 (((
371 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
372 )))
373
374 (((
375 and put as below:
376 )))
377
378 [[image:1656051152438-578.png]]
379
380
381
382 == 2.5 Show data on Application Server ==
383
384 (((
385 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
386 )))
387
388 (((
389
390 )))
391
392 (((
393 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
394 )))
395
396 (((
397 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
398 )))
399
400 [[image:1656051197172-131.png]]
401
402
403 **Add TagoIO:**
404
405 [[image:1656051223585-631.png]]
406
407
408 **Authorization:**
409
410 [[image:1656051248318-368.png]]
411
412
413 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
414
415 [[image:1656051277767-168.png]]
416
417
418
419 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
420
421 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
422
423 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
424 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
425
426 There are two kinds of commands to configure WSC1-L, they are:
427
428 * (% style="color:#4472c4" %)**General Commands**.
429
430 These commands are to configure:
431
432 * General system settings like: uplink interval.
433 * LoRaWAN protocol & radio related command.
434
435 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
436
437 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
438
439
440 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
441
442 These commands only valid for WSC1-L, as below:
443
444
445
446 == 3.1 Set Transmit Interval Time ==
447
448 Feature: Change LoRaWAN End Node Transmit Interval.
449
450 (% style="color:#037691" %)**AT Command: AT+TDC**
451
452 [[image:image-20220624142619-8.png]]
453
454
455 (% style="color:#037691" %)**Downlink Command: 0x01**
456
457 Format: Command Code (0x01) followed by 3 bytes time value.
458
459 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
460
461 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
462 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
463
464
465
466
467
468 == 3.2 Set Emergency Mode ==
469
470 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
471
472 (% style="color:#037691" %)**AT Command:**
473
474 [[image:image-20220624142956-9.png]]
475
476
477 (% style="color:#037691" %)**Downlink Command:**
478
479 * 0xE101     Same as: AT+ALARMMOD=1
480 * 0xE100     Same as: AT+ALARMMOD=0
481
482 == 3.3 Add or Delete RS485 Sensor ==
483
484 (((
485 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
486 )))
487
488 (((
489 (% style="color:#037691" %)**AT Command: **
490 )))
491
492 (((
493 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
494 )))
495
496 * (((
497 Type_Code range:  A1 ~~ A4
498 )))
499 * (((
500 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
501 )))
502 * (((
503 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
504 )))
505 * (((
506 Read_Length:  RS485 response frame length supposed to receive. Max can receive
507 )))
508 * (((
509 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
510 )))
511 * (((
512 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
513 )))
514 * (((
515 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
516 )))
517
518 (((
519 **Example:**
520 )))
521
522 (((
523 User need to change external sensor use the type code as address code.
524 )))
525
526 (((
527 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
528 )))
529
530 [[image:image-20220624143553-10.png]]
531
532
533 The response frame of the sensor is as follows:
534
535 [[image:image-20220624143618-11.png]]
536
537
538
539 **Then the following parameters should be:**
540
541 * Address_Code range: A1
542 * Query_Length: 8
543 * Query_Command: A103000000019CAA
544 * Read_Length: 8
545 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
546 * has_CRC: 1
547 * timeout: 1500 (Fill in the test according to the actual situation)
548
549 **So the input command is:**
550
551 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
552
553
554 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
555
556 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
557 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
558 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
559
560 **Related commands:**
561
562 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
563
564 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
565
566
567 (% style="color:#037691" %)**Downlink Command:  **
568
569 **delete custom sensor A1:**
570
571 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
572
573 **Remove all custom sensors**
574
575 * 0xE5FF  
576
577 == 3.4 RS485 Test Command ==
578
579 (% style="color:#037691" %)**AT Command:**
580
581 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
582 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
583 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
584 Send command to 485 sensor
585
586 Range : no more than 10 bytes
587 )))|(% style="width:85px" %)OK
588
589 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
590
591 AT+RSWRITE=0103000001840A
592
593
594 (% style="color:#037691" %)**Downlink Command:**
595
596 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
597
598 == 3.5 RS485 response timeout ==
599
600 Feature: Set or get extended time to receive 485 sensor data.
601
602 (% style="color:#037691" %)**AT Command:**
603
604 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
605 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
606 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
607 Set response timeout to:
608
609 Range : 0~~10000
610 )))|(% style="width:85px" %)OK
611
612 (% style="color:#037691" %)**Downlink Command:**
613
614 Format: Command Code (0xE0) followed by 3 bytes time value.
615
616 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
617
618 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
619 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
620
621 == 3.6 Set Sensor Type ==
622
623 (((
624 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
625 )))
626
627 (((
628 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
629 )))
630
631 [[image:image-20220624144904-12.png]]
632
633
634 (% style="color:#037691" %)**AT Command:**
635
636 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
637 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
638 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
639
640 Eg: The setting command **AT+STYPE=802212** means:
641
642 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
643 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
644 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
645 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
646 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
647 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
648 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
649
650 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
651
652
653 (% style="color:#037691" %)**Downlink Command:**
654
655 * 0xE400802212     Same as: AT+STYPE=80221
656
657 (% style="color:red" %)**Note:**
658
659 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
660
661
662
663
664 = 4. Power consumption and battery =
665
666 == 4.1 Total Power Consumption ==
667
668 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
669
670
671 == 4.2 Reduce power consumption ==
672
673 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
674
675
676 == 4.3 Battery ==
677
678 (((
679 All sensors are only power by external power source. If external power source is off. All sensor won't work.
680 )))
681
682 (((
683 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
684 )))
685
686
687 = 5. Main Process Unit WSC1-L =
688
689 == 5.1 Features ==
690
691 * Wall Attachable.
692 * LoRaWAN v1.0.3 Class A protocol.
693 * RS485 / Modbus protocol
694 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
695 * AT Commands to change parameters
696 * Remote configure parameters via LoRaWAN Downlink
697 * Firmware upgradable via program port
698 * Powered by external 12v battery
699 * Back up rechargeable 1000mAh battery
700 * IP Rating: IP65
701 * Support default sensors or 3rd party RS485 sensors
702
703 == 5.2 Power Consumption ==
704
705 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
706
707
708 == 5.3 Storage & Operation Temperature ==
709
710 -20°C to +60°C
711
712
713 == 5.4 Pin Mapping ==
714
715 [[image:1656054149793-239.png]]
716
717
718 == 5.5 Mechanical ==
719
720 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
721
722
723 == 5.6 Connect to RS485 Sensors ==
724
725 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
726
727
728 [[image:1656054389031-379.png]]
729
730
731 Hardware Design for the Converter Board please see:
732
733 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
734
735
736 = 6. Weather Sensors =
737
738 == 6.1 Rain Gauge ~-~- WSS-01 ==
739
740
741 (((
742 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
743 )))
744
745 (((
746 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
747 )))
748
749 (((
750 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
751 )))
752
753 (((
754 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
755 )))
756
757 (((
758 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
759 )))
760
761
762 === 6.1.1 Feature ===
763
764 * RS485 Rain Gauge
765 * Small dimension, easy to install
766 * Vents under funnel, avoid leaf or other things to avoid rain flow.
767 * ABS enclosure.
768 * Horizontal adjustable.
769
770 === 6.1.2 Specification ===
771
772 * Resolution: 0.2mm
773 * Accuracy: ±3%
774 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
775 * Input Power: DC 5~~24v
776 * Interface: RS485
777 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
778 * Working Humidity: <100% (no dewing)
779 * Power Consumption: 4mA @ 12v.
780
781 === 6.1.3 Dimension ===
782
783 [[image:1656054957406-980.png]]
784
785
786 === 6.1.4 Pin Mapping ===
787
788 [[image:1656054972828-692.png]]
789
790
791 === 6.1.5 Installation Notice ===
792
793 (((
794 Do not power on while connect the cables. Double check the wiring before power on.
795 )))
796
797 (((
798 Installation Photo as reference:
799 )))
800
801
802 (((
803 (% style="color:#4472c4" %)** Install on Ground:**
804 )))
805
806 (((
807 WSS-01 Rain Gauge include screws so can install in ground directly .
808 )))
809
810
811 (((
812 (% style="color:#4472c4" %)** Install on pole:**
813 )))
814
815 (((
816 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
817 )))
818
819 [[image:image-20220624152218-1.png||height="526" width="276"]]
820
821 WS-K2: Bracket Kit for Pole installation
822
823
824 WSSC-K2 dimension document, please see:
825
826 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
827
828
829 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
830
831 [[image:1656055444035-179.png]]
832
833 (((
834 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
835 )))
836
837 (((
838 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
839 )))
840
841 (((
842 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
843 )))
844
845
846 === 6.2.1 Feature ===
847
848 * RS485 wind speed / direction sensor
849 * PC enclosure, resist corrosion
850
851 === 6.2.2 Specification ===
852
853 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
854 * Wind direction range: 0 ~~ 360°
855 * Start wind speed: ≤0.3m/s
856 * Accuracy: ±(0.3+0.03V)m/s , ±1°
857 * Input Power: DC 5~~24v
858 * Interface: RS485
859 * Working Temperature: -30℃~70℃
860 * Working Humidity: <100% (no dewing)
861 * Power Consumption: 13mA ~~ 12v.
862 * Cable Length: 2 meters
863
864 === 6.2.3 Dimension ===
865
866 [[image:image-20220624152813-2.png]]
867
868
869 === 6.2.4 Pin Mapping ===
870
871 [[image:1656056281231-994.png]]
872
873
874 === 6.2.5  Angle Mapping ===
875
876 [[image:1656056303845-585.png]]
877
878
879 === 6.2.6  Installation Notice ===
880
881 (((
882 Do not power on while connect the cables. Double check the wiring before power on.
883 )))
884
885 (((
886 The sensor must be installed with below direction, towards North.
887 )))
888
889 [[image:image-20220624153901-3.png]]
890
891
892 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
893
894
895 (((
896 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
897 )))
898
899 (((
900 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
901 )))
902
903 (((
904 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
905 )))
906
907
908 === 6.3.1 Feature ===
909
910 * RS485 CO2, PM2.5, PM10 sensor
911 * NDIR to measure CO2 with Internal Temperature Compensation
912 * Laser Beam Scattering to PM2.5 and PM10
913
914 === 6.3.2 Specification ===
915
916 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
917 * CO2 resolution: 1ppm
918 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
919 * PM2.5/PM10 resolution: 1μg/m3
920 * Input Power: DC 7 ~~ 24v
921 * Preheat time: 3min
922 * Interface: RS485
923 * Working Temperature:
924 ** CO2: 0℃~50℃;
925 ** PM2.5/PM10: -30 ~~ 50℃
926 * Working Humidity:
927 ** PM2.5/PM10: 15~80%RH (no dewing)
928 ** CO2: 0~95%RH
929 * Power Consumption: 50mA@ 12v.
930
931 === 6.3.3 Dimension ===
932
933 [[image:1656056708366-230.png]]
934
935
936 === 6.3.4 Pin Mapping ===
937
938 [[image:1656056722648-743.png]]
939
940
941 === 6.3.5 Installation Notice ===
942
943 Do not power on while connect the cables. Double check the wiring before power on.
944
945 [[image:1656056751153-304.png]]
946
947 [[image:1656056766224-773.png]]
948
949
950 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
951
952
953 (((
954 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
955 )))
956
957 (((
958 WSS-04 has auto heating feature, this ensures measurement more reliable.
959 )))
960
961 (((
962 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
963 )))
964
965
966
967 === 6.4.1 Feature ===
968
969 * RS485 Rain/Snow detect sensor
970 * Surface heating to dry
971 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
972
973 === 6.4.2 Specification ===
974
975 * Detect if there is rain or snow
976 * Input Power: DC 12 ~~ 24v
977 * Interface: RS485
978 * Working Temperature: -30℃~70℃
979 * Working Humidity: 10~90%RH
980 * Power Consumption:
981 ** No heating: 12mA @ 12v,
982 ** heating: 94ma @ 12v.
983
984 === 6.4.3 Dimension ===
985
986 [[image:1656056844782-155.png]]
987
988
989 === 6.4.4 Pin Mapping ===
990
991 [[image:1656056855590-754.png]]
992
993
994 === 6.4.5 Installation Notice ===
995
996 Do not power on while connect the cables. Double check the wiring before power on.
997
998
999 (((
1000 Install with 15°degree.
1001 )))
1002
1003 [[image:1656056873783-780.png]]
1004
1005
1006 [[image:1656056883736-804.png]]
1007
1008
1009 === 6.4.6 Heating ===
1010
1011 (((
1012 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1013 )))
1014
1015
1016 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1017
1018
1019 (((
1020 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1021 )))
1022
1023 (((
1024 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1025 )))
1026
1027
1028 === 6.5.1 Feature ===
1029
1030 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1031
1032
1033
1034
1035
1036 === 6.5.2 Specification ===
1037
1038 * Input Power: DC 12 ~~ 24v
1039 * Interface: RS485
1040 * Temperature Sensor Spec:
1041 ** Range: -30 ~~ 70℃
1042 ** resolution 0.1℃
1043 ** Accuracy: ±0.5℃
1044 * Humidity Sensor Spec:
1045 ** Range: 0 ~~ 100% RH
1046 ** resolution 0.1 %RH
1047 ** Accuracy: 3% RH
1048 * Pressure Sensor Spec:
1049 ** Range: 10~1100hPa
1050 ** Resolution: 0.1hPa
1051 ** Accuracy: ±0.1hPa
1052 * Illuminate sensor:
1053 ** Range: 0~2/20/200kLux
1054 ** Resolution: 10 Lux
1055 ** Accuracy: ±3%FS
1056 * Working Temperature: -30℃~70℃
1057 * Working Humidity: 10~90%RH
1058 * Power Consumption: 4mA @ 12v
1059
1060
1061
1062
1063
1064 === 6.5.3 Dimension ===
1065
1066 [[image:1656057170639-522.png]]
1067
1068
1069 === 6.5.4 Pin Mapping ===
1070
1071 [[image:1656057181899-910.png]]
1072
1073
1074 === 6.5.5 Installation Notice ===
1075
1076 Do not power on while connect the cables. Double check the wiring before power on.
1077
1078 [[image:1656057199955-514.png]]
1079
1080
1081 [[image:1656057212438-475.png]]
1082
1083
1084 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1085
1086
1087 (((
1088 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1089 )))
1090
1091 (((
1092 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1093 )))
1094
1095 (((
1096 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1097 )))
1098
1099
1100
1101 === 6.6.1 Feature ===
1102
1103 * RS485 Total Solar Radiation sensor
1104 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1105 * Measure Reflected Radiation if sense area towards ground.
1106
1107
1108
1109
1110 === 6.6.2 Specification ===
1111
1112 * Input Power: DC 5 ~~ 24v
1113 * Interface: RS485
1114 * Detect spectrum: 0.3~3μm(300~3000nm)
1115 * Measure strength range: 0~2000W/m2
1116 * Resolution: 0.1W/m2
1117 * Accuracy: ±3%
1118 * Yearly Stability: ≤±2%
1119 * Cosine response: ≤7% (@ Sun angle 10°)
1120 * Temperature Effect: ±2%(-10℃~40℃)
1121 * Working Temperature: -40℃~70℃
1122 * Working Humidity: 10~90%RH
1123 * Power Consumption: 4mA @ 12v
1124
1125
1126
1127
1128
1129 === 6.6.3 Dimension ===
1130
1131 [[image:1656057348695-898.png]]
1132
1133
1134 === 6.6.4 Pin Mapping ===
1135
1136 [[image:1656057359343-744.png]]
1137
1138
1139 === 6.6.5 Installation Notice ===
1140
1141 Do not power on while connect the cables. Double check the wiring before power on.
1142
1143 [[image:1656057369259-804.png]]
1144
1145
1146 [[image:1656057377943-564.png]]
1147
1148
1149 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1150
1151
1152 (((
1153 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1154 )))
1155
1156 (((
1157 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1158 )))
1159
1160 (((
1161 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1162 )))
1163
1164
1165 === 6.7.1 Feature ===
1166
1167 (((
1168 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1169 )))
1170
1171 (((
1172 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1173 )))
1174
1175
1176 === 6.7.2 Specification ===
1177
1178 * Input Power: DC 5 ~~ 24v
1179 * Interface: RS485
1180 * Response Spectrum: 400~700nm
1181 * Measure range: 0~2500μmol/m2•s
1182 * Resolution: 1μmol/m2•s
1183 * Accuracy: ±2%
1184 * Yearly Stability: ≤±2%
1185 * Working Temperature: -30℃~75℃
1186 * Working Humidity: 10~90%RH
1187 * Power Consumption: 3mA @ 12v
1188
1189
1190
1191
1192
1193 === 6.7.3 Dimension ===
1194
1195 [[image:1656057538793-888.png]]
1196
1197
1198 === 6.7.4 Pin Mapping ===
1199
1200 [[image:1656057548116-203.png]]
1201
1202
1203 === 6.7.5 Installation Notice ===
1204
1205 Do not power on while connect the cables. Double check the wiring before power on.
1206
1207
1208 [[image:1656057557191-895.png]]
1209
1210
1211 [[image:1656057565783-251.png]]
1212
1213
1214 = 7. FAQ =
1215
1216 == 7.1 What else do I need to purchase to build Weather Station? ==
1217
1218 Below is the installation photo and structure:
1219
1220 [[image:1656057598349-319.png]]
1221
1222
1223 [[image:1656057608049-693.png]]
1224
1225
1226
1227 == 7.2 How to upgrade firmware for WSC1-L? ==
1228
1229 (((
1230 Firmware Location & Change log:
1231 )))
1232
1233 (((
1234 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1235 )))
1236
1237
1238 (((
1239 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1240 )))
1241
1242
1243 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1244
1245 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1246
1247
1248 == 7.4 Can I add my weather sensors? ==
1249
1250 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1251
1252
1253 = 8. Trouble Shooting =
1254
1255 == 8.1 AT Command input doesn't work ==
1256
1257 (((
1258 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1259 )))
1260
1261
1262 = 9. Order Info =
1263
1264 == 9.1 Main Process Unit ==
1265
1266 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1267
1268 (% style="color:blue" %)**XX**(%%): The default frequency band
1269
1270 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1271 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1272 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1273 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1274 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1275 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1276 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1277 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1278
1279
1280 == 9.2 Sensors ==
1281
1282 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1283 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 100px;" %)**Part Number**
1284 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1285 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1286 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1287 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1288 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1289 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1290 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1291 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1292
1293
1294 = 10. Support =
1295
1296 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1297 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1298
1299
1300 = 11. Appendix I: Field Installation Photo =
1301
1302
1303 [[image:1656058346362-132.png]]
1304
1305 **Storage Battery**: 12v,12AH li battery
1306
1307
1308
1309 **Wind Speed/Direction**
1310
1311 [[image:1656058373174-421.png]]
1312
1313
1314
1315 **Total Solar Radiation sensor**
1316
1317 [[image:1656058397364-282.png]]
1318
1319
1320
1321 **PAR Sensor**
1322
1323 [[image:1656058416171-615.png]]
1324
1325
1326
1327 **CO2/PM2.5/PM10 3 in 1 sensor**
1328
1329 [[image:1656058441194-827.png]]
1330
1331
1332
1333 **Rain / Snow Detect**
1334
1335 [[image:1656058451456-166.png]]
1336
1337
1338
1339 **Rain Gauge**
1340
1341 [[image:1656058463455-569.png]]