Version 94.1 by Saxer Lin on 2023/08/05 14:43

Hide last authors
Ellie Zhang 26.1 1 (% style="text-align:center" %)
Xiaoling 80.2 2 [[image:image-20230614153353-1.png]]
Edwin Chen 1.1 3
4
Xiaoling 67.2 5
Xiaoling 75.2 6
7
8
9
kai 31.2 10 **Table of Contents:**
Ellie Zhang 30.1 11
Edwin Chen 1.1 12 {{toc/}}
13
14
15
16
17
18
kai 31.1 19 = 1. Introduction =
Edwin Chen 1.1 20
Xiaoling 80.2 21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
Edwin Chen 1.1 22
Xiaoling 39.6 23
Xiaoling 80.3 24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
Edwin Chen 1.1 25
Xiaoling 80.3 26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
Edwin Chen 1.1 27
Xiaoling 80.2 28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
Edwin Chen 1.1 29
Xiaoling 80.3 30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
Xiaoling 62.4 31
Xiaoling 80.3 32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
Edwin Chen 1.1 33
Xiaoling 80.3 34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
Edwin Chen 1.1 35
Xiaoling 80.3 36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
Xiaoling 75.3 37
Xiaoling 84.2 38 [[image:image-20230615152941-1.png||height="459" width="800"]]
Edwin Chen 1.1 39
Xiaoling 64.2 40
Edwin Chen 1.1 41 == 1.2 ​Features ==
42
Xiaoling 39.6 43
Edwin Chen 1.1 44 * LoRaWAN 1.0.3 Class A
Xiaoling 62.4 45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
Edwin Chen 1.1 46 * Ultra-low power consumption
Xiaoling 82.2 47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 * Monitor Battery Level
Edwin Chen 1.1 51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
Xiaoling 70.5 53 * AT Commands to change parameters
Edwin Chen 1.1 54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
Xiaoling 90.18 57
Edwin Chen 1.1 58 == 1.3 Specification ==
59
60
Xiaoling 70.28 61 (% style="color:#037691" %)**Common DC Characteristics:**
Xiaoling 70.6 62
Xiaoling 70.28 63 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 * Operating Temperature: -40 ~~ 85°C
65
Xiaoling 82.3 66 (% style="color:#037691" %)**Probe Specification:**
67
68 * Storage temperature:-20℃~~75℃
69 * Operating temperature : -20℃~~60℃
70 * Measure Distance:
71 ** 0.1m ~~ 12m @ 90% Reflectivity
72 ** 0.1m ~~ 4m @ 10% Reflectivity
73 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
74 * Distance resolution : 5mm
75 * Ambient light immunity : 70klux
76 * Enclosure rating : IP65
77 * Light source : LED
78 * Central wavelength : 850nm
79 * FOV : 3.6°
80 * Material of enclosure : ABS+PC
81 * Wire length : 25cm
82
Xiaoling 70.28 83 (% style="color:#037691" %)**LoRa Spec:**
84
85 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
86 * Max +22 dBm constant RF output vs.
87 * RX sensitivity: down to -139 dBm.
88 * Excellent blocking immunity
89
90 (% style="color:#037691" %)**Battery:**
91
92 * Li/SOCI2 un-chargeable battery
93 * Capacity: 8500mAh
94 * Self-Discharge: <1% / Year @ 25°C
95 * Max continuously current: 130mA
96 * Max boost current: 2A, 1 second
97
98 (% style="color:#037691" %)**Power Consumption**
99
100 * Sleep Mode: 5uA @ 3.3v
101 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
102
Xiaoling 90.18 103
Xiaoling 82.4 104 == 1.4 Applications ==
Xiaoling 70.6 105
Xiaoling 79.15 106
Xiaoling 82.4 107 * Horizontal distance measurement
108 * Parking management system
109 * Object proximity and presence detection
110 * Intelligent trash can management system
111 * Robot obstacle avoidance
112 * Automatic control
113 * Sewer
Xiaoling 77.4 114
Xiaoling 90.18 115
Xiaoling 79.18 116 (% style="display:none" %)
117
Xiaoling 82.4 118 == 1.5 Sleep mode and working mode ==
Xiaoling 77.4 119
120
Edwin Chen 1.1 121 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
122
123 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
124
125
Xiaoling 82.4 126 == 1.6 Button & LEDs ==
Edwin Chen 1.1 127
128
Edwin Chen 6.1 129 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
Edwin Chen 1.1 130
131
Xiaoling 14.13 132 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 90.12 133 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
Edwin Chen 1.1 134 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
135 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
136 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
137 )))
138 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
139 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
140 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
141 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
142 )))
Edwin Chen 6.1 143 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
Edwin Chen 1.1 144
Xiaoling 90.19 145
Xiaoling 82.4 146 == 1.7 BLE connection ==
Edwin Chen 1.1 147
148
Xiaoling 80.4 149 LDS12-LB support BLE remote configure.
Edwin Chen 1.1 150
151 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152
153 * Press button to send an uplink
154 * Press button to active device.
155 * Device Power on or reset.
156
157 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158
159
Xiaoling 82.4 160 == 1.8 Pin Definitions ==
Edwin Chen 1.1 161
Xiaoling 82.4 162 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
Edwin Chen 1.1 163
Saxer Lin 43.1 164
Xiaoling 82.4 165 == 1.9 Mechanical ==
Xiaoling 67.4 166
Xiaoling 82.4 167
Edwin Chen 6.1 168 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
Edwin Chen 1.1 169
170
Edwin Chen 6.1 171 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
Edwin Chen 1.1 172
173
Edwin Chen 6.1 174 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
Edwin Chen 1.1 175
176
Xiaoling 70.20 177 (% style="color:blue" %)**Probe Mechanical:**
Xiaoling 70.10 178
179
Xiaoling 82.3 180 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
Xiaoling 79.2 181
182
Xiaoling 80.4 183 = 2. Configure LDS12-LB to connect to LoRaWAN network =
Xiaoling 67.4 184
Edwin Chen 1.1 185 == 2.1 How it works ==
186
187
Xiaoling 80.4 188 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 1.1 189
Xiaoling 64.2 190 (% style="display:none" %) (%%)
Edwin Chen 1.1 191
192 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
Xiaoling 62.5 197 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 1.1 198
Xiaoling 84.2 199 [[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
Edwin Chen 1.1 200
Xiaoling 64.2 201
Xiaoling 80.4 202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
Edwin Chen 1.1 203
Xiaoling 80.4 204 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 1.1 205
Ellie Zhang 30.1 206 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 1.1 207
208
209 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
210
211
212 (% style="color:blue" %)**Register the device**
213
Xiaoling 14.13 214 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
Edwin Chen 1.1 215
216
217 (% style="color:blue" %)**Add APP EUI and DEV EUI**
218
Ellie Zhang 30.1 219 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
Edwin Chen 1.1 220
221
222 (% style="color:blue" %)**Add APP EUI in the application**
223
224
Ellie Zhang 30.1 225 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
Edwin Chen 1.1 226
227
228 (% style="color:blue" %)**Add APP KEY**
229
Ellie Zhang 30.1 230 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
Edwin Chen 1.1 231
232
Xiaoling 80.4 233 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
Edwin Chen 1.1 234
235
Xiaoling 80.4 236 Press the button for 5 seconds to activate the LDS12-LB.
Edwin Chen 6.1 237
Edwin Chen 1.1 238 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
239
240 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
241
242
Xiaoling 82.8 243 == 2.3 ​Uplink Payload ==
Edwin Chen 1.1 244
Saxer Lin 85.1 245 === 2.3.1 Device Status, FPORT~=5 ===
246
Xiaoling 90.2 247
Saxer Lin 85.1 248 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
249
250 The Payload format is as below.
251
Xiaoling 90.2 252 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 90.11 253 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
Saxer Lin 85.1 254 **Size(bytes)**
Xiaoling 90.11 255 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
Saxer Lin 85.1 256 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
257
258 Example parse in TTNv3
259
Saxer Lin 93.1 260 [[image:image-20230805103904-1.png||height="131" width="711"]]
261
Xiaoling 90.17 262 (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
Saxer Lin 85.1 263
Xiaoling 90.17 264 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
Saxer Lin 85.1 265
Xiaoling 90.17 266 (% style="color:blue" %)**Frequency Band**:
Saxer Lin 85.1 267
268 0x01: EU868
269
270 0x02: US915
271
272 0x03: IN865
273
274 0x04: AU915
275
276 0x05: KZ865
277
278 0x06: RU864
279
280 0x07: AS923
281
282 0x08: AS923-1
283
284 0x09: AS923-2
285
286 0x0a: AS923-3
287
288 0x0b: CN470
289
290 0x0c: EU433
291
292 0x0d: KR920
293
294 0x0e: MA869
295
Xiaoling 90.17 296 (% style="color:blue" %)**Sub-Band**:
Saxer Lin 85.1 297
298 AU915 and US915:value 0x00 ~~ 0x08
299
300 CN470: value 0x0B ~~ 0x0C
301
302 Other Bands: Always 0x00
303
Xiaoling 90.17 304 (% style="color:blue" %)**Battery Info**:
Saxer Lin 85.1 305
306 Check the battery voltage.
307
308 Ex1: 0x0B45 = 2885mV
309
310 Ex2: 0x0B49 = 2889mV
311
312
Saxer Lin 89.1 313 === 2.3.2 Uplink Payload, FPORT~=2 ===
Saxer Lin 85.1 314
Xiaoling 90.2 315
Xiaoling 62.5 316 (((
Saxer Lin 93.1 317 LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
Edwin Chen 1.1 318
Saxer Lin 93.1 319 periodically send this uplink every 20 minutes, this interval [[can be changed>>https://111]].
320
321 Uplink Payload totals 11 bytes.
Xiaoling 62.5 322 )))
Edwin Chen 1.1 323
Xiaoling 90.7 324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
325 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
Xiaoling 70.10 326 **Size(bytes)**
Xiaoling 90.9 327 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
Xiaoling 90.6 328 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
329 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
330 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
Xiaoling 90.14 331 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
Xiaoling 90.6 332 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
333 [[Message Type>>||anchor="HMessageType"]]
Xiaoling 82.4 334 )))
Edwin Chen 1.1 335
Saxer Lin 93.1 336 [[image:image-20230805104104-2.png||height="136" width="754"]]
Edwin Chen 1.1 337
338
Xiaoling 90.16 339 ==== (% style="color:blue" %)**Battery Info**(%%) ====
Edwin Chen 1.1 340
341
Xiaoling 80.4 342 Check the battery voltage for LDS12-LB.
Edwin Chen 1.1 343
Xiaoling 70.10 344 Ex1: 0x0B45 = 2885mV
Edwin Chen 1.1 345
Xiaoling 70.10 346 Ex2: 0x0B49 = 2889mV
Saxer Lin 46.1 347
Edwin Chen 1.1 348
Xiaoling 90.16 349 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
Xiaoling 67.7 350
351
Xiaoling 82.4 352 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
Edwin Chen 1.1 353
Xiaoling 14.22 354
Xiaoling 82.4 355 **Example**:
Edwin Chen 1.1 356
Xiaoling 82.4 357 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
Xiaoling 79.11 358
Xiaoling 82.4 359 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
Xiaoling 67.7 360
361
Xiaoling 90.16 362 ==== (% style="color:blue" %)**Distance**(%%) ====
Edwin Chen 10.1 363
Edwin Chen 1.1 364
Xiaoling 82.4 365 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
366
367
368 **Example**:
369
370 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
371
372
Xiaoling 90.16 373 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
Xiaoling 82.4 374
375
376 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
377
378
379 **Example**:
380
381 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
382
383 Customers can judge whether they need to adjust the environment based on the signal strength.
384
385
Xiaoling 90.16 386 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
Xiaoling 82.4 387
388
Xiaoling 82.13 389 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
Xiaoling 82.4 390
Xiaoling 82.13 391 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
Xiaoling 82.4 392
Xiaoling 70.10 393 **Example:**
Edwin Chen 1.1 394
Xiaoling 70.10 395 0x00: Normal uplink packet.
Edwin Chen 1.1 396
Xiaoling 70.10 397 0x01: Interrupt Uplink Packet.
Edwin Chen 1.1 398
399
Xiaoling 90.16 400 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
Xiaoling 62.5 401
Edwin Chen 1.1 402
Xiaoling 82.4 403 Characterize the internal temperature value of the sensor.
Edwin Chen 1.1 404
Xiaoling 82.4 405 **Example: **
406 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
407 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
Edwin Chen 1.1 408
Xiaoling 39.5 409
Xiaoling 90.16 410 ==== (% style="color:blue" %)**Message Type**(%%) ====
Edwin Chen 1.1 411
412
Saxer Lin 55.1 413 (((
Xiaoling 82.4 414 For a normal uplink payload, the message type is always 0x01.
Saxer Lin 55.1 415 )))
416
417 (((
Xiaoling 82.4 418 Valid Message Type:
Saxer Lin 55.1 419 )))
Saxer Lin 46.1 420
Xiaoling 82.4 421 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
Xiaoling 82.7 422 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
Xiaoling 82.11 423 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
Xiaoling 82.12 424 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
Saxer Lin 46.1 425
Xiaoling 90.19 426
Xiaoling 90.2 427 === 2.3.3 Decode payload in The Things Network ===
Xiaoling 82.8 428
429
Xiaoling 70.10 430 While using TTN network, you can add the payload format to decode the payload.
Edwin Chen 1.1 431
Xiaoling 82.10 432 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
Edwin Chen 1.1 433
434
Xiaoling 62.5 435 (((
Xiaoling 82.4 436 The payload decoder function for TTN is here:
Xiaoling 62.5 437 )))
Edwin Chen 1.1 438
Xiaoling 82.4 439 (((
440 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
441 )))
Edwin Chen 1.1 442
Xiaoling 82.4 443
Saxer Lin 93.1 444 == 2.4 ​Show Data in DataCake IoT Server ==
Edwin Chen 1.1 445
446
Xiaoling 62.5 447 (((
Xiaoling 70.10 448 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
Xiaoling 62.5 449 )))
Edwin Chen 1.1 450
451
Xiaoling 62.5 452 (((
Xiaoling 70.10 453 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
Xiaoling 62.5 454 )))
Edwin Chen 1.1 455
Xiaoling 62.5 456 (((
Xiaoling 70.10 457 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
Xiaoling 62.5 458 )))
Xiaoling 14.26 459
Saxer Lin 55.1 460
Xiaoling 70.10 461 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
Edwin Chen 1.1 462
463
Xiaoling 70.10 464 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
Edwin Chen 1.1 465
466
Xiaoling 70.10 467 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
Edwin Chen 1.1 468
Xiaoling 80.4 469 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
Edwin Chen 1.1 470
Xiaoling 70.10 471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
Xiaoling 62.5 472
Edwin Chen 1.1 473
Xiaoling 70.10 474 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
Edwin Chen 1.1 475
Xiaoling 70.10 476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
Edwin Chen 1.1 477
478
Saxer Lin 93.1 479 == 2.5 Datalog Feature ==
Edwin Chen 1.1 480
481
Xiaoling 80.4 482 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
Xiaoling 62.5 483
484
Saxer Lin 93.1 485 === 2.5.1 Ways to get datalog via LoRaWAN ===
Xiaoling 62.5 486
487
Xiaoling 80.4 488 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
Xiaoling 62.5 489
490 * (((
Xiaoling 80.4 491 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
Xiaoling 62.5 492 )))
493 * (((
Xiaoling 80.4 494 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
Xiaoling 62.5 495 )))
496
497 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
498
499 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
500
501
Saxer Lin 93.1 502 === 2.5.2 Unix TimeStamp ===
Xiaoling 62.5 503
504
Xiaoling 80.4 505 LDS12-LB uses Unix TimeStamp format based on
Xiaoling 62.5 506
507 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
508
509 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
510
511 Below is the converter example
512
513 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
514
515
516 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
517
518
Saxer Lin 93.1 519 === 2.5.3 Set Device Time ===
Xiaoling 62.5 520
521
522 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
523
Xiaoling 80.4 524 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
Xiaoling 62.5 525
526 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
527
528
Saxer Lin 93.1 529 === 2.5.4 Poll sensor value ===
Xiaoling 62.5 530
531
532 Users can poll sensor values based on timestamps. Below is the downlink command.
533
534 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
Xiaoling 90.16 535 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
Xiaoling 62.5 536 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
537 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
538
539 (((
540 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
541 )))
542
543 (((
Xiaoling 64.8 544 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
Xiaoling 62.5 545 )))
546
547 (((
548 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
549 )))
550
551 (((
Xiaoling 80.4 552 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
Xiaoling 62.5 553 )))
554
555
Saxer Lin 93.1 556 == 2.6 Frequency Plans ==
Edwin Chen 1.1 557
558
Xiaoling 80.4 559 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 1.1 560
561 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
562
563
Saxer Lin 93.1 564 == 2.7 LiDAR ToF Measurement ==
Xiaoling 82.4 565
Saxer Lin 93.1 566 === 2.7.1 Principle of Distance Measurement ===
Xiaoling 82.4 567
568
569 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
570
Xiaoling 82.15 571 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
Xiaoling 82.4 572
573
Saxer Lin 93.1 574 === 2.7.2 Distance Measurement Characteristics ===
Xiaoling 82.4 575
576
577 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
578
Xiaoling 82.15 579 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
Xiaoling 82.4 580
581
582 (((
583 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
584 )))
585
586 (((
587 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
588 )))
589
590 (((
591 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
592 )))
593
594
595 (((
596 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
597 )))
598
Xiaoling 82.15 599 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
Xiaoling 82.4 600
601 (((
602 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
603 )))
604
Xiaoling 82.15 605 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
Xiaoling 82.4 606
607 (((
608 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
609 )))
610
611
Saxer Lin 93.1 612 === 2.7.3 Notice of usage ===
Xiaoling 82.4 613
614
615 Possible invalid /wrong reading for LiDAR ToF tech:
616
617 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
618 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
619 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
620 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
621
Xiaoling 90.19 622
Saxer Lin 93.1 623 === 2.7.4  Reflectivity of different objects ===
Xiaoling 90.19 624
Xiaoling 82.4 625
626 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
Xiaoling 82.15 627 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
Xiaoling 82.4 628 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
629 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
630 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
631 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
632 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
633 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
634 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
635 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
636 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
637 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
638 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
639 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
640 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
641 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
642 |(% style="width:53px" %)15|(% style="width:229px" %)(((
643 Unpolished white metal surface
644 )))|(% style="width:93px" %)130%
645 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
646 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
647 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
648
Xiaoling 90.19 649
Xiaoling 80.4 650 = 3. Configure LDS12-LB =
Edwin Chen 1.1 651
kai 16.4 652 == 3.1 Configure Methods ==
Edwin Chen 1.1 653
654
Xiaoling 80.4 655 LDS12-LB supports below configure method:
Edwin Chen 1.1 656
657 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
Xiaoling 67.20 658
Edwin Chen 11.1 659 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
Xiaoling 67.20 660
Edwin Chen 1.1 661 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
662
Xiaoling 90.19 663
Edwin Chen 1.1 664 == 3.2 General Commands ==
665
666
667 These commands are to configure:
668
669 * General system settings like: uplink interval.
Xiaoling 67.20 670
Edwin Chen 1.1 671 * LoRaWAN protocol & radio related command.
672
673 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
674
675 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
676
677
Xiaoling 80.4 678 == 3.3 Commands special design for LDS12-LB ==
Edwin Chen 1.1 679
680
Xiaoling 80.4 681 These commands only valid for LDS12-LB, as below:
Edwin Chen 1.1 682
683
684 === 3.3.1 Set Transmit Interval Time ===
685
686
Xiaoling 62.5 687 (((
Edwin Chen 1.1 688 Feature: Change LoRaWAN End Node Transmit Interval.
Xiaoling 62.5 689 )))
690
691 (((
Edwin Chen 1.1 692 (% style="color:blue" %)**AT Command: AT+TDC**
Xiaoling 62.5 693 )))
Edwin Chen 1.1 694
Xiaoling 14.34 695 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 82.16 696 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
Edwin Chen 1.1 697 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
698 30000
699 OK
700 the interval is 30000ms = 30s
701 )))
702 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
703 OK
704 Set transmit interval to 60000ms = 60 seconds
705 )))
706
Xiaoling 62.5 707 (((
Edwin Chen 1.1 708 (% style="color:blue" %)**Downlink Command: 0x01**
Xiaoling 62.5 709 )))
Edwin Chen 1.1 710
Xiaoling 62.5 711 (((
Edwin Chen 1.1 712 Format: Command Code (0x01) followed by 3 bytes time value.
Xiaoling 62.5 713 )))
Edwin Chen 1.1 714
Xiaoling 62.5 715 (((
Edwin Chen 1.1 716 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
Xiaoling 62.5 717 )))
Edwin Chen 1.1 718
Xiaoling 62.5 719 * (((
720 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
721 )))
722 * (((
Xiaoling 73.8 723 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
Xiaoling 82.22 724
725
726
Xiaoling 82.5 727 )))
Xiaoling 79.19 728
Xiaoling 70.11 729 === 3.3.2 Set Interrupt Mode ===
Xiaoling 62.5 730
731
Saxer Lin 43.1 732 Feature, Set Interrupt mode for PA8 of pin.
Edwin Chen 1.1 733
Saxer Lin 46.1 734 When AT+INTMOD=0 is set, PA8 is used as a digital input port.
735
Edwin Chen 1.1 736 (% style="color:blue" %)**AT Command: AT+INTMOD**
737
Xiaoling 14.34 738 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 82.16 739 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Edwin Chen 1.1 740 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
741 0
742 OK
743 the mode is 0 =Disable Interrupt
744 )))
745 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
746 Set Transmit Interval
747 0. (Disable Interrupt),
748 ~1. (Trigger by rising and falling edge)
749 2. (Trigger by falling edge)
750 3. (Trigger by rising edge)
751 )))|(% style="width:157px" %)OK
752
753 (% style="color:blue" %)**Downlink Command: 0x06**
754
755 Format: Command Code (0x06) followed by 3 bytes.
756
757 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
758
759 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
Xiaoling 62.6 760
Edwin Chen 1.1 761 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
762
Xiaoling 90.19 763
Saxer Lin 90.1 764 === 3.3.3  Set Power Output Duration ===
765
766 Control the output duration 3V3 . Before each sampling, device will
767
768 ~1. first enable the power output to external sensor,
769
770 2. keep it on as per duration, read sensor value and construct uplink payload
771
772 3. final, close the power output.
773
774 (% style="color:blue" %)**AT Command: AT+3V3T**
775
776 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
777 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
778 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
779 OK
780 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
781 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
782
783 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
784 Format: Command Code (0x07) followed by 3 bytes.
785
786 The first byte is 01,the second and third bytes are the time to turn on.
787
788 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
789 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
790
Xiaoling 90.19 791
kai 16.4 792 = 4. Battery & Power Consumption =
Xiaoling 14.45 793
Edwin Chen 1.1 794
Xiaoling 80.4 795 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 1.1 796
797 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
798
799
kai 16.4 800 = 5. OTA Firmware update =
Edwin Chen 1.1 801
802
Edwin Chen 13.1 803 (% class="wikigeneratedid" %)
Xiaoling 80.4 804 User can change firmware LDS12-LB to:
Edwin Chen 1.1 805
Edwin Chen 13.1 806 * Change Frequency band/ region.
Xiaoling 62.7 807
Edwin Chen 13.1 808 * Update with new features.
Xiaoling 62.7 809
Edwin Chen 13.1 810 * Fix bugs.
Edwin Chen 1.1 811
Xiaoling 82.20 812 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
Edwin Chen 1.1 813
kai 31.1 814 Methods to Update Firmware:
Edwin Chen 1.1 815
Xiaoling 79.15 816 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
Xiaoling 62.7 817
Xiaoling 70.18 818 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 1.1 819
Xiaoling 90.19 820
kai 31.1 821 = 6. FAQ =
Edwin Chen 1.1 822
Xiaoling 80.4 823 == 6.1 What is the frequency plan for LDS12-LB? ==
Edwin Chen 1.1 824
Xiaoling 62.7 825
Xiaoling 80.4 826 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
Xiaoling 62.7 827
Edwin Chen 1.1 828
Xiaoling 80.4 829 = 7. Trouble Shooting =
Edwin Chen 1.1 830
Xiaoling 80.4 831 == 7.1 AT Command input doesn't work ==
Edwin Chen 1.1 832
Xiaoling 70.14 833
Xiaoling 80.4 834 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
Xiaoling 70.14 835
836
Xiaoling 80.4 837 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
Xiaoling 70.14 838
839
Xiaoling 80.4 840 (((
Xiaoling 82.21 841 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
Xiaoling 80.4 842 )))
Xiaoling 70.14 843
Xiaoling 80.4 844 (((
Xiaoling 82.21 845 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
Xiaoling 80.4 846 )))
Xiaoling 70.14 847
848
Xiaoling 80.4 849 (((
850 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
851 )))
Xiaoling 70.14 852
Xiaoling 79.7 853 (((
Xiaoling 82.21 854 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
Xiaoling 79.7 855 )))
Xiaoling 70.14 856
857
858 = 8. Order Info =
859
860
Xiaoling 80.4 861 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
Xiaoling 70.14 862
Xiaoling 70.12 863 (% style="color:red" %)**XXX**(%%): **The default frequency band**
Edwin Chen 1.1 864
Ellie Zhang 38.1 865 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
Edwin Chen 1.1 866
Ellie Zhang 38.1 867 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
Edwin Chen 1.1 868
Ellie Zhang 38.1 869 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
Edwin Chen 1.1 870
Ellie Zhang 38.1 871 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
Edwin Chen 1.1 872
Ellie Zhang 38.1 873 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
Edwin Chen 1.1 874
Ellie Zhang 38.1 875 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
Edwin Chen 1.1 876
Ellie Zhang 38.1 877 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
Edwin Chen 1.1 878
Ellie Zhang 38.1 879 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
Edwin Chen 1.1 880
Xiaoling 90.19 881
Xiaoling 70.14 882 = 9. ​Packing Info =
Xiaoling 67.11 883
884
Ellie Zhang 39.1 885 (% style="color:#037691" %)**Package Includes**:
Edwin Chen 1.1 886
Xiaoling 80.4 887 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
Edwin Chen 1.1 888
Ellie Zhang 39.1 889 (% style="color:#037691" %)**Dimension and weight**:
Edwin Chen 1.1 890
kai 31.1 891 * Device Size: cm
Edwin Chen 1.1 892
kai 31.1 893 * Device Weight: g
Edwin Chen 1.1 894
kai 31.1 895 * Package Size / pcs : cm
Edwin Chen 1.1 896
kai 31.1 897 * Weight / pcs : g
Edwin Chen 1.1 898
Xiaoling 90.19 899
Xiaoling 70.14 900 = 10. Support =
901
902
kai 31.1 903 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 39.6 904
905 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].