Version 90.19 by Xiaoling on 2023/07/15 15:54

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230614153353-1.png]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19 = 1. Introduction =
20
21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22
23
24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25
26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27
28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29
30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31
32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33
34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35
36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37
38 [[image:image-20230615152941-1.png||height="459" width="800"]]
39
40
41 == 1.2 ​Features ==
42
43
44 * LoRaWAN 1.0.3 Class A
45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 * Ultra-low power consumption
47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 * Monitor Battery Level
51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
53 * AT Commands to change parameters
54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57
58
59 == 1.3 Specification ==
60
61
62 (% style="color:#037691" %)**Common DC Characteristics:**
63
64 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
65 * Operating Temperature: -40 ~~ 85°C
66
67 (% style="color:#037691" %)**Probe Specification:**
68
69 * Storage temperature:-20℃~~75℃
70 * Operating temperature : -20℃~~60℃
71 * Measure Distance:
72 ** 0.1m ~~ 12m @ 90% Reflectivity
73 ** 0.1m ~~ 4m @ 10% Reflectivity
74 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 * Distance resolution : 5mm
76 * Ambient light immunity : 70klux
77 * Enclosure rating : IP65
78 * Light source : LED
79 * Central wavelength : 850nm
80 * FOV : 3.6°
81 * Material of enclosure : ABS+PC
82 * Wire length : 25cm
83
84 (% style="color:#037691" %)**LoRa Spec:**
85
86 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
87 * Max +22 dBm constant RF output vs.
88 * RX sensitivity: down to -139 dBm.
89 * Excellent blocking immunity
90
91 (% style="color:#037691" %)**Battery:**
92
93 * Li/SOCI2 un-chargeable battery
94 * Capacity: 8500mAh
95 * Self-Discharge: <1% / Year @ 25°C
96 * Max continuously current: 130mA
97 * Max boost current: 2A, 1 second
98
99 (% style="color:#037691" %)**Power Consumption**
100
101 * Sleep Mode: 5uA @ 3.3v
102 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
103
104
105
106 == 1.4 Applications ==
107
108
109 * Horizontal distance measurement
110 * Parking management system
111 * Object proximity and presence detection
112 * Intelligent trash can management system
113 * Robot obstacle avoidance
114 * Automatic control
115 * Sewer
116
117
118
119 (% style="display:none" %)
120
121 == 1.5 Sleep mode and working mode ==
122
123
124 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
125
126 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
127
128
129 == 1.6 Button & LEDs ==
130
131
132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
133
134
135 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
137 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
140 )))
141 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
142 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
143 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
144 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
145 )))
146 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
147
148
149
150 == 1.7 BLE connection ==
151
152
153 LDS12-LB support BLE remote configure.
154
155 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
156
157 * Press button to send an uplink
158 * Press button to active device.
159 * Device Power on or reset.
160
161 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
162
163
164 == 1.8 Pin Definitions ==
165
166 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
167
168
169 == 1.9 Mechanical ==
170
171
172 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
173
174
175 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
176
177
178 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
179
180
181 (% style="color:blue" %)**Probe Mechanical:**
182
183
184 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
185
186
187 = 2. Configure LDS12-LB to connect to LoRaWAN network =
188
189 == 2.1 How it works ==
190
191
192 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
193
194 (% style="display:none" %) (%%)
195
196 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
197
198
199 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
200
201 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
202
203 [[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
204
205
206 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
207
208 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
209
210 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
211
212
213 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
214
215
216 (% style="color:blue" %)**Register the device**
217
218 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
219
220
221 (% style="color:blue" %)**Add APP EUI and DEV EUI**
222
223 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
224
225
226 (% style="color:blue" %)**Add APP EUI in the application**
227
228
229 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
230
231
232 (% style="color:blue" %)**Add APP KEY**
233
234 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
235
236
237 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
238
239
240 Press the button for 5 seconds to activate the LDS12-LB.
241
242 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
243
244 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
245
246
247 == 2.3 ​Uplink Payload ==
248
249 === 2.3.1 Device Status, FPORT~=5 ===
250
251
252 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
253
254 The Payload format is as below.
255
256 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
257 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
258 **Size(bytes)**
259 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
260 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
261
262 Example parse in TTNv3
263
264 (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
265
266 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
267
268 (% style="color:blue" %)**Frequency Band**:
269
270 0x01: EU868
271
272 0x02: US915
273
274 0x03: IN865
275
276 0x04: AU915
277
278 0x05: KZ865
279
280 0x06: RU864
281
282 0x07: AS923
283
284 0x08: AS923-1
285
286 0x09: AS923-2
287
288 0x0a: AS923-3
289
290 0x0b: CN470
291
292 0x0c: EU433
293
294 0x0d: KR920
295
296 0x0e: MA869
297
298 (% style="color:blue" %)**Sub-Band**:
299
300 AU915 and US915:value 0x00 ~~ 0x08
301
302 CN470: value 0x0B ~~ 0x0C
303
304 Other Bands: Always 0x00
305
306 (% style="color:blue" %)**Battery Info**:
307
308 Check the battery voltage.
309
310 Ex1: 0x0B45 = 2885mV
311
312 Ex2: 0x0B49 = 2889mV
313
314
315 === 2.3.2 Uplink Payload, FPORT~=2 ===
316
317
318 (((
319 LDS12-LB will uplink payload via LoRaWAN with below payload format: 
320 )))
321
322 (((
323 Uplink payload includes in total 11 bytes.
324 )))
325
326 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
327 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
328 **Size(bytes)**
329 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
330 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
331 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
332 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
333 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
334 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
335 [[Message Type>>||anchor="HMessageType"]]
336 )))
337
338 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
339
340
341 ==== (% style="color:blue" %)**Battery Info**(%%) ====
342
343
344 Check the battery voltage for LDS12-LB.
345
346 Ex1: 0x0B45 = 2885mV
347
348 Ex2: 0x0B49 = 2889mV
349
350
351 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
352
353
354 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
355
356
357 **Example**:
358
359 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
360
361 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
362
363
364 ==== (% style="color:blue" %)**Distance**(%%) ====
365
366
367 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
368
369
370 **Example**:
371
372 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
373
374
375 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
376
377
378 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
379
380
381 **Example**:
382
383 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
384
385 Customers can judge whether they need to adjust the environment based on the signal strength.
386
387
388 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
389
390
391 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
392
393 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
394
395 **Example:**
396
397 0x00: Normal uplink packet.
398
399 0x01: Interrupt Uplink Packet.
400
401
402 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
403
404
405 Characterize the internal temperature value of the sensor.
406
407 **Example: **
408 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
409 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
410
411
412 ==== (% style="color:blue" %)**Message Type**(%%) ====
413
414
415 (((
416 For a normal uplink payload, the message type is always 0x01.
417 )))
418
419 (((
420 Valid Message Type:
421 )))
422
423 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
424 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
425 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
426 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
427
428
429
430 === 2.3.3 Decode payload in The Things Network ===
431
432
433 While using TTN network, you can add the payload format to decode the payload.
434
435 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
436
437
438 (((
439 The payload decoder function for TTN is here:
440 )))
441
442 (((
443 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
444 )))
445
446
447 == 2.4 Uplink Interval ==
448
449
450 The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
451
452
453 == 2.5 ​Show Data in DataCake IoT Server ==
454
455
456 (((
457 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
458 )))
459
460
461 (((
462 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
463 )))
464
465 (((
466 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
467 )))
468
469
470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
471
472
473 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
474
475
476 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
477
478 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
479
480 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
481
482
483 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
484
485 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
486
487
488 == 2.6 Datalog Feature ==
489
490
491 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
492
493
494 === 2.6.1 Ways to get datalog via LoRaWAN ===
495
496
497 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
498
499 * (((
500 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
501 )))
502 * (((
503 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
504 )))
505
506 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
507
508 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
509
510
511 === 2.6.2 Unix TimeStamp ===
512
513
514 LDS12-LB uses Unix TimeStamp format based on
515
516 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
517
518 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
519
520 Below is the converter example
521
522 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
523
524
525 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
526
527
528 === 2.6.3 Set Device Time ===
529
530
531 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
532
533 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
534
535 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
536
537
538 === 2.6.4 Poll sensor value ===
539
540
541 Users can poll sensor values based on timestamps. Below is the downlink command.
542
543 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
544 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
545 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
546 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
547
548 (((
549 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
550 )))
551
552 (((
553 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
554 )))
555
556 (((
557 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
558 )))
559
560 (((
561 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
562 )))
563
564
565 == 2.7 Frequency Plans ==
566
567
568 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
569
570 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
571
572
573 == 2.8 LiDAR ToF Measurement ==
574
575 === 2.8.1 Principle of Distance Measurement ===
576
577
578 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
579
580 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
581
582
583 === 2.8.2 Distance Measurement Characteristics ===
584
585
586 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
587
588 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
589
590
591 (((
592 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
593 )))
594
595 (((
596 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
597 )))
598
599 (((
600 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
601 )))
602
603
604 (((
605 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
606 )))
607
608 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
609
610 (((
611 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
612 )))
613
614 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
615
616 (((
617 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
618 )))
619
620
621 === 2.8.3 Notice of usage ===
622
623
624 Possible invalid /wrong reading for LiDAR ToF tech:
625
626 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
627 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
628 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
629 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
630
631
632
633 === 2.8.4  Reflectivity of different objects ===
634
635
636 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
637 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
638 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
639 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
640 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
641 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
642 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
643 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
644 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
645 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
646 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
647 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
648 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
649 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
650 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
651 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
652 |(% style="width:53px" %)15|(% style="width:229px" %)(((
653 Unpolished white metal surface
654 )))|(% style="width:93px" %)130%
655 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
656 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
657 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
658
659
660
661 = 3. Configure LDS12-LB =
662
663 == 3.1 Configure Methods ==
664
665
666 LDS12-LB supports below configure method:
667
668 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
669
670 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
671
672 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
673
674
675
676 == 3.2 General Commands ==
677
678
679 These commands are to configure:
680
681 * General system settings like: uplink interval.
682
683 * LoRaWAN protocol & radio related command.
684
685 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
686
687 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
688
689
690 == 3.3 Commands special design for LDS12-LB ==
691
692
693 These commands only valid for LDS12-LB, as below:
694
695
696 === 3.3.1 Set Transmit Interval Time ===
697
698
699 (((
700 Feature: Change LoRaWAN End Node Transmit Interval.
701 )))
702
703 (((
704 (% style="color:blue" %)**AT Command: AT+TDC**
705 )))
706
707 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
708 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
709 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
710 30000
711 OK
712 the interval is 30000ms = 30s
713 )))
714 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
715 OK
716 Set transmit interval to 60000ms = 60 seconds
717 )))
718
719 (((
720 (% style="color:blue" %)**Downlink Command: 0x01**
721 )))
722
723 (((
724 Format: Command Code (0x01) followed by 3 bytes time value.
725 )))
726
727 (((
728 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
729 )))
730
731 * (((
732 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
733 )))
734 * (((
735 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
736
737
738
739 )))
740
741 === 3.3.2 Set Interrupt Mode ===
742
743
744 Feature, Set Interrupt mode for PA8 of pin.
745
746 When AT+INTMOD=0 is set, PA8 is used as a digital input port.
747
748 (% style="color:blue" %)**AT Command: AT+INTMOD**
749
750 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
751 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
752 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
753 0
754 OK
755 the mode is 0 =Disable Interrupt
756 )))
757 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
758 Set Transmit Interval
759 0. (Disable Interrupt),
760 ~1. (Trigger by rising and falling edge)
761 2. (Trigger by falling edge)
762 3. (Trigger by rising edge)
763 )))|(% style="width:157px" %)OK
764
765 (% style="color:blue" %)**Downlink Command: 0x06**
766
767 Format: Command Code (0x06) followed by 3 bytes.
768
769 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
770
771 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
772
773 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
774
775
776
777 === 3.3.3  Set Power Output Duration ===
778
779 Control the output duration 3V3 . Before each sampling, device will
780
781 ~1. first enable the power output to external sensor,
782
783 2. keep it on as per duration, read sensor value and construct uplink payload
784
785 3. final, close the power output.
786
787 (% style="color:blue" %)**AT Command: AT+3V3T**
788
789 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
790 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
791 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
792 OK
793 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
794 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
795
796 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
797 Format: Command Code (0x07) followed by 3 bytes.
798
799 The first byte is 01,the second and third bytes are the time to turn on.
800
801 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
802 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
803
804
805
806 = 4. Battery & Power Consumption =
807
808
809 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
810
811 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
812
813
814 = 5. OTA Firmware update =
815
816
817 (% class="wikigeneratedid" %)
818 User can change firmware LDS12-LB to:
819
820 * Change Frequency band/ region.
821
822 * Update with new features.
823
824 * Fix bugs.
825
826 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
827
828 Methods to Update Firmware:
829
830 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
831
832 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
833
834
835
836 = 6. FAQ =
837
838 == 6.1 What is the frequency plan for LDS12-LB? ==
839
840
841 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
842
843
844 = 7. Trouble Shooting =
845
846 == 7.1 AT Command input doesn't work ==
847
848
849 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
850
851
852 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
853
854
855 (((
856 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
857 )))
858
859 (((
860 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
861 )))
862
863
864 (((
865 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
866 )))
867
868 (((
869 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
870 )))
871
872
873 = 8. Order Info =
874
875
876 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
877
878 (% style="color:red" %)**XXX**(%%): **The default frequency band**
879
880 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
881
882 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
883
884 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
885
886 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
887
888 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
889
890 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
891
892 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
893
894 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
895
896
897
898 = 9. ​Packing Info =
899
900
901 (% style="color:#037691" %)**Package Includes**:
902
903 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
904
905 (% style="color:#037691" %)**Dimension and weight**:
906
907 * Device Size: cm
908
909 * Device Weight: g
910
911 * Package Size / pcs : cm
912
913 * Weight / pcs : g
914
915
916
917 = 10. Support =
918
919
920 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
921
922 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].