Version 90.18 by Xiaoling on 2023/07/15 15:53

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230614153353-1.png]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19 = 1. Introduction =
20
21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22
23
24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25
26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27
28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29
30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31
32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33
34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35
36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37
38 [[image:image-20230615152941-1.png||height="459" width="800"]]
39
40
41 == 1.2 ​Features ==
42
43
44 * LoRaWAN 1.0.3 Class A
45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 * Ultra-low power consumption
47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 * Monitor Battery Level
51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
53 * AT Commands to change parameters
54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57
58
59 == 1.3 Specification ==
60
61
62 (% style="color:#037691" %)**Common DC Characteristics:**
63
64 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
65 * Operating Temperature: -40 ~~ 85°C
66
67 (% style="color:#037691" %)**Probe Specification:**
68
69 * Storage temperature:-20℃~~75℃
70 * Operating temperature : -20℃~~60℃
71 * Measure Distance:
72 ** 0.1m ~~ 12m @ 90% Reflectivity
73 ** 0.1m ~~ 4m @ 10% Reflectivity
74 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 * Distance resolution : 5mm
76 * Ambient light immunity : 70klux
77 * Enclosure rating : IP65
78 * Light source : LED
79 * Central wavelength : 850nm
80 * FOV : 3.6°
81 * Material of enclosure : ABS+PC
82 * Wire length : 25cm
83
84 (% style="color:#037691" %)**LoRa Spec:**
85
86 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
87 * Max +22 dBm constant RF output vs.
88 * RX sensitivity: down to -139 dBm.
89 * Excellent blocking immunity
90
91 (% style="color:#037691" %)**Battery:**
92
93 * Li/SOCI2 un-chargeable battery
94 * Capacity: 8500mAh
95 * Self-Discharge: <1% / Year @ 25°C
96 * Max continuously current: 130mA
97 * Max boost current: 2A, 1 second
98
99 (% style="color:#037691" %)**Power Consumption**
100
101 * Sleep Mode: 5uA @ 3.3v
102 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
103
104
105
106 == 1.4 Applications ==
107
108
109 * Horizontal distance measurement
110 * Parking management system
111 * Object proximity and presence detection
112 * Intelligent trash can management system
113 * Robot obstacle avoidance
114 * Automatic control
115 * Sewer
116
117
118
119 (% style="display:none" %)
120
121 == 1.5 Sleep mode and working mode ==
122
123
124 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
125
126 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
127
128
129 == 1.6 Button & LEDs ==
130
131
132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
133
134
135 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
137 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
140 )))
141 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
142 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
143 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
144 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
145 )))
146 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
147
148 == 1.7 BLE connection ==
149
150
151 LDS12-LB support BLE remote configure.
152
153 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
154
155 * Press button to send an uplink
156 * Press button to active device.
157 * Device Power on or reset.
158
159 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
160
161
162 == 1.8 Pin Definitions ==
163
164 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
165
166
167 == 1.9 Mechanical ==
168
169
170 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
171
172
173 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
174
175
176 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
177
178
179 (% style="color:blue" %)**Probe Mechanical:**
180
181
182 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
183
184
185 = 2. Configure LDS12-LB to connect to LoRaWAN network =
186
187 == 2.1 How it works ==
188
189
190 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
191
192 (% style="display:none" %) (%%)
193
194 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
195
196
197 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
198
199 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
200
201 [[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
202
203
204 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
205
206 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
207
208 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
209
210
211 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
212
213
214 (% style="color:blue" %)**Register the device**
215
216 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
217
218
219 (% style="color:blue" %)**Add APP EUI and DEV EUI**
220
221 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
222
223
224 (% style="color:blue" %)**Add APP EUI in the application**
225
226
227 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
228
229
230 (% style="color:blue" %)**Add APP KEY**
231
232 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
233
234
235 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
236
237
238 Press the button for 5 seconds to activate the LDS12-LB.
239
240 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
241
242 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
243
244
245 == 2.3 ​Uplink Payload ==
246
247 === 2.3.1 Device Status, FPORT~=5 ===
248
249
250 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
251
252 The Payload format is as below.
253
254 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
255 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
256 **Size(bytes)**
257 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
258 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
259
260 Example parse in TTNv3
261
262 (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
263
264 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
265
266 (% style="color:blue" %)**Frequency Band**:
267
268 0x01: EU868
269
270 0x02: US915
271
272 0x03: IN865
273
274 0x04: AU915
275
276 0x05: KZ865
277
278 0x06: RU864
279
280 0x07: AS923
281
282 0x08: AS923-1
283
284 0x09: AS923-2
285
286 0x0a: AS923-3
287
288 0x0b: CN470
289
290 0x0c: EU433
291
292 0x0d: KR920
293
294 0x0e: MA869
295
296 (% style="color:blue" %)**Sub-Band**:
297
298 AU915 and US915:value 0x00 ~~ 0x08
299
300 CN470: value 0x0B ~~ 0x0C
301
302 Other Bands: Always 0x00
303
304 (% style="color:blue" %)**Battery Info**:
305
306 Check the battery voltage.
307
308 Ex1: 0x0B45 = 2885mV
309
310 Ex2: 0x0B49 = 2889mV
311
312
313 === 2.3.2 Uplink Payload, FPORT~=2 ===
314
315
316 (((
317 LDS12-LB will uplink payload via LoRaWAN with below payload format: 
318 )))
319
320 (((
321 Uplink payload includes in total 11 bytes.
322 )))
323
324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
325 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 **Size(bytes)**
327 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
328 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
329 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
330 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
331 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
332 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
333 [[Message Type>>||anchor="HMessageType"]]
334 )))
335
336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
337
338
339 ==== (% style="color:blue" %)**Battery Info**(%%) ====
340
341
342 Check the battery voltage for LDS12-LB.
343
344 Ex1: 0x0B45 = 2885mV
345
346 Ex2: 0x0B49 = 2889mV
347
348
349 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
350
351
352 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
353
354
355 **Example**:
356
357 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
358
359 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
360
361
362 ==== (% style="color:blue" %)**Distance**(%%) ====
363
364
365 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
366
367
368 **Example**:
369
370 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
371
372
373 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
374
375
376 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
377
378
379 **Example**:
380
381 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
382
383 Customers can judge whether they need to adjust the environment based on the signal strength.
384
385
386 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
387
388
389 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
390
391 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
392
393 **Example:**
394
395 0x00: Normal uplink packet.
396
397 0x01: Interrupt Uplink Packet.
398
399
400 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
401
402
403 Characterize the internal temperature value of the sensor.
404
405 **Example: **
406 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
407 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
408
409
410 ==== (% style="color:blue" %)**Message Type**(%%) ====
411
412
413 (((
414 For a normal uplink payload, the message type is always 0x01.
415 )))
416
417 (((
418 Valid Message Type:
419 )))
420
421 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
422 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
423 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
424 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
425
426 === 2.3.3 Decode payload in The Things Network ===
427
428
429 While using TTN network, you can add the payload format to decode the payload.
430
431 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
432
433
434 (((
435 The payload decoder function for TTN is here:
436 )))
437
438 (((
439 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
440 )))
441
442
443 == 2.4 Uplink Interval ==
444
445
446 The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
447
448
449 == 2.5 ​Show Data in DataCake IoT Server ==
450
451
452 (((
453 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
454 )))
455
456
457 (((
458 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
459 )))
460
461 (((
462 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
463 )))
464
465
466 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
467
468
469 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
470
471
472 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
473
474 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
475
476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
477
478
479 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
480
481 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
482
483
484 == 2.6 Datalog Feature ==
485
486
487 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
488
489
490 === 2.6.1 Ways to get datalog via LoRaWAN ===
491
492
493 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
494
495 * (((
496 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
497 )))
498 * (((
499 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
500 )))
501
502 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
503
504 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
505
506
507 === 2.6.2 Unix TimeStamp ===
508
509
510 LDS12-LB uses Unix TimeStamp format based on
511
512 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
513
514 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
515
516 Below is the converter example
517
518 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
519
520
521 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
522
523
524 === 2.6.3 Set Device Time ===
525
526
527 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
528
529 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
530
531 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
532
533
534 === 2.6.4 Poll sensor value ===
535
536
537 Users can poll sensor values based on timestamps. Below is the downlink command.
538
539 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
540 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
541 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
542 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
543
544 (((
545 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
546 )))
547
548 (((
549 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
550 )))
551
552 (((
553 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
554 )))
555
556 (((
557 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
558 )))
559
560
561 == 2.7 Frequency Plans ==
562
563
564 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
565
566 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
567
568
569 == 2.8 LiDAR ToF Measurement ==
570
571 === 2.8.1 Principle of Distance Measurement ===
572
573
574 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
575
576 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
577
578
579 === 2.8.2 Distance Measurement Characteristics ===
580
581
582 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
583
584 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
585
586
587 (((
588 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
589 )))
590
591 (((
592 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
593 )))
594
595 (((
596 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
597 )))
598
599
600 (((
601 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
602 )))
603
604 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
605
606 (((
607 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
608 )))
609
610 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
611
612 (((
613 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
614 )))
615
616
617 === 2.8.3 Notice of usage ===
618
619
620 Possible invalid /wrong reading for LiDAR ToF tech:
621
622 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
623 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
624 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
625 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
626
627 === 2.8.4  Reflectivity of different objects ===
628
629
630 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
631 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
632 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
633 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
634 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
635 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
636 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
637 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
638 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
639 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
640 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
641 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
642 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
643 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
644 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
645 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
646 |(% style="width:53px" %)15|(% style="width:229px" %)(((
647 Unpolished white metal surface
648 )))|(% style="width:93px" %)130%
649 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
650 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
651 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
652
653 = 3. Configure LDS12-LB =
654
655 == 3.1 Configure Methods ==
656
657
658 LDS12-LB supports below configure method:
659
660 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
661
662 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
663
664 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
665
666 == 3.2 General Commands ==
667
668
669 These commands are to configure:
670
671 * General system settings like: uplink interval.
672
673 * LoRaWAN protocol & radio related command.
674
675 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
676
677 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
678
679
680 == 3.3 Commands special design for LDS12-LB ==
681
682
683 These commands only valid for LDS12-LB, as below:
684
685
686 === 3.3.1 Set Transmit Interval Time ===
687
688
689 (((
690 Feature: Change LoRaWAN End Node Transmit Interval.
691 )))
692
693 (((
694 (% style="color:blue" %)**AT Command: AT+TDC**
695 )))
696
697 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
698 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
699 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
700 30000
701 OK
702 the interval is 30000ms = 30s
703 )))
704 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
705 OK
706 Set transmit interval to 60000ms = 60 seconds
707 )))
708
709 (((
710 (% style="color:blue" %)**Downlink Command: 0x01**
711 )))
712
713 (((
714 Format: Command Code (0x01) followed by 3 bytes time value.
715 )))
716
717 (((
718 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
719 )))
720
721 * (((
722 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
723 )))
724 * (((
725 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
726
727
728
729 )))
730
731 === 3.3.2 Set Interrupt Mode ===
732
733
734 Feature, Set Interrupt mode for PA8 of pin.
735
736 When AT+INTMOD=0 is set, PA8 is used as a digital input port.
737
738 (% style="color:blue" %)**AT Command: AT+INTMOD**
739
740 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
741 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
742 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
743 0
744 OK
745 the mode is 0 =Disable Interrupt
746 )))
747 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
748 Set Transmit Interval
749 0. (Disable Interrupt),
750 ~1. (Trigger by rising and falling edge)
751 2. (Trigger by falling edge)
752 3. (Trigger by rising edge)
753 )))|(% style="width:157px" %)OK
754
755 (% style="color:blue" %)**Downlink Command: 0x06**
756
757 Format: Command Code (0x06) followed by 3 bytes.
758
759 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
760
761 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
762
763 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
764
765 === 3.3.3  Set Power Output Duration ===
766
767 Control the output duration 3V3 . Before each sampling, device will
768
769 ~1. first enable the power output to external sensor,
770
771 2. keep it on as per duration, read sensor value and construct uplink payload
772
773 3. final, close the power output.
774
775 (% style="color:blue" %)**AT Command: AT+3V3T**
776
777 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
778 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
779 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
780 OK
781 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
782 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
783
784 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
785 Format: Command Code (0x07) followed by 3 bytes.
786
787 The first byte is 01,the second and third bytes are the time to turn on.
788
789 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
790 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
791
792 = 4. Battery & Power Consumption =
793
794
795 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
796
797 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
798
799
800 = 5. OTA Firmware update =
801
802
803 (% class="wikigeneratedid" %)
804 User can change firmware LDS12-LB to:
805
806 * Change Frequency band/ region.
807
808 * Update with new features.
809
810 * Fix bugs.
811
812 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
813
814 Methods to Update Firmware:
815
816 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
817
818 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
819
820 = 6. FAQ =
821
822 == 6.1 What is the frequency plan for LDS12-LB? ==
823
824
825 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
826
827
828 = 7. Trouble Shooting =
829
830 == 7.1 AT Command input doesn't work ==
831
832
833 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
834
835
836 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
837
838
839 (((
840 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
841 )))
842
843 (((
844 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
845 )))
846
847
848 (((
849 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
850 )))
851
852 (((
853 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
854 )))
855
856
857 = 8. Order Info =
858
859
860 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
861
862 (% style="color:red" %)**XXX**(%%): **The default frequency band**
863
864 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
865
866 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
867
868 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
869
870 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
871
872 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
873
874 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
875
876 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
877
878 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
879
880 = 9. ​Packing Info =
881
882
883 (% style="color:#037691" %)**Package Includes**:
884
885 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
886
887 (% style="color:#037691" %)**Dimension and weight**:
888
889 * Device Size: cm
890
891 * Device Weight: g
892
893 * Package Size / pcs : cm
894
895 * Weight / pcs : g
896
897 = 10. Support =
898
899
900 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
901
902 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].