Version 90.17 by Xiaoling on 2023/07/15 15:51

Hide last authors
Ellie Zhang 26.1 1 (% style="text-align:center" %)
Xiaoling 80.2 2 [[image:image-20230614153353-1.png]]
Edwin Chen 1.1 3
4
Xiaoling 67.2 5
Xiaoling 75.2 6
7
8
9
kai 31.2 10 **Table of Contents:**
Ellie Zhang 30.1 11
Edwin Chen 1.1 12 {{toc/}}
13
14
15
16
17
18
kai 31.1 19 = 1. Introduction =
Edwin Chen 1.1 20
Xiaoling 80.2 21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
Edwin Chen 1.1 22
Xiaoling 39.6 23
Xiaoling 80.3 24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
Edwin Chen 1.1 25
Xiaoling 80.3 26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
Edwin Chen 1.1 27
Xiaoling 80.2 28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
Edwin Chen 1.1 29
Xiaoling 80.3 30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
Xiaoling 62.4 31
Xiaoling 80.3 32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
Edwin Chen 1.1 33
Xiaoling 80.3 34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
Edwin Chen 1.1 35
Xiaoling 80.3 36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
Xiaoling 75.3 37
Xiaoling 84.2 38 [[image:image-20230615152941-1.png||height="459" width="800"]]
Edwin Chen 1.1 39
Xiaoling 64.2 40
Edwin Chen 1.1 41 == 1.2 ​Features ==
42
Xiaoling 39.6 43
Edwin Chen 1.1 44 * LoRaWAN 1.0.3 Class A
Xiaoling 62.4 45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
Edwin Chen 1.1 46 * Ultra-low power consumption
Xiaoling 82.2 47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 * Monitor Battery Level
Edwin Chen 1.1 51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
Xiaoling 70.5 53 * AT Commands to change parameters
Edwin Chen 1.1 54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57 == 1.3 Specification ==
58
59
Xiaoling 70.28 60 (% style="color:#037691" %)**Common DC Characteristics:**
Xiaoling 70.6 61
Xiaoling 70.28 62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 * Operating Temperature: -40 ~~ 85°C
64
Xiaoling 82.3 65 (% style="color:#037691" %)**Probe Specification:**
66
67 * Storage temperature:-20℃~~75℃
68 * Operating temperature : -20℃~~60℃
69 * Measure Distance:
70 ** 0.1m ~~ 12m @ 90% Reflectivity
71 ** 0.1m ~~ 4m @ 10% Reflectivity
72 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Distance resolution : 5mm
74 * Ambient light immunity : 70klux
75 * Enclosure rating : IP65
76 * Light source : LED
77 * Central wavelength : 850nm
78 * FOV : 3.6°
79 * Material of enclosure : ABS+PC
80 * Wire length : 25cm
81
Xiaoling 70.28 82 (% style="color:#037691" %)**LoRa Spec:**
83
84 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 * Max +22 dBm constant RF output vs.
86 * RX sensitivity: down to -139 dBm.
87 * Excellent blocking immunity
88
89 (% style="color:#037691" %)**Battery:**
90
91 * Li/SOCI2 un-chargeable battery
92 * Capacity: 8500mAh
93 * Self-Discharge: <1% / Year @ 25°C
94 * Max continuously current: 130mA
95 * Max boost current: 2A, 1 second
96
97 (% style="color:#037691" %)**Power Consumption**
98
99 * Sleep Mode: 5uA @ 3.3v
100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101
Xiaoling 82.4 102 == 1.4 Applications ==
Xiaoling 70.6 103
Xiaoling 79.15 104
Xiaoling 82.4 105 * Horizontal distance measurement
106 * Parking management system
107 * Object proximity and presence detection
108 * Intelligent trash can management system
109 * Robot obstacle avoidance
110 * Automatic control
111 * Sewer
Xiaoling 77.4 112
Xiaoling 79.18 113 (% style="display:none" %)
114
Xiaoling 82.4 115 == 1.5 Sleep mode and working mode ==
Xiaoling 77.4 116
117
Edwin Chen 1.1 118 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119
120 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121
122
Xiaoling 82.4 123 == 1.6 Button & LEDs ==
Edwin Chen 1.1 124
125
Edwin Chen 6.1 126 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
Edwin Chen 1.1 127
128
Xiaoling 14.13 129 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 90.12 130 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
Edwin Chen 1.1 131 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 )))
135 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 )))
Edwin Chen 6.1 140 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
Edwin Chen 1.1 141
Xiaoling 82.4 142 == 1.7 BLE connection ==
Edwin Chen 1.1 143
144
Xiaoling 80.4 145 LDS12-LB support BLE remote configure.
Edwin Chen 1.1 146
147 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148
149 * Press button to send an uplink
150 * Press button to active device.
151 * Device Power on or reset.
152
153 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154
155
Xiaoling 82.4 156 == 1.8 Pin Definitions ==
Edwin Chen 1.1 157
Xiaoling 82.4 158 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
Edwin Chen 1.1 159
Saxer Lin 43.1 160
Xiaoling 82.4 161 == 1.9 Mechanical ==
Xiaoling 67.4 162
Xiaoling 82.4 163
Edwin Chen 6.1 164 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
Edwin Chen 1.1 165
166
Edwin Chen 6.1 167 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
Edwin Chen 1.1 168
169
Edwin Chen 6.1 170 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
Edwin Chen 1.1 171
172
Xiaoling 70.20 173 (% style="color:blue" %)**Probe Mechanical:**
Xiaoling 70.10 174
175
Xiaoling 82.3 176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
Xiaoling 79.2 177
178
Xiaoling 80.4 179 = 2. Configure LDS12-LB to connect to LoRaWAN network =
Xiaoling 67.4 180
Edwin Chen 1.1 181 == 2.1 How it works ==
182
183
Xiaoling 80.4 184 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 1.1 185
Xiaoling 64.2 186 (% style="display:none" %) (%%)
Edwin Chen 1.1 187
188 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
189
190
191 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
192
Xiaoling 62.5 193 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 1.1 194
Xiaoling 84.2 195 [[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
Edwin Chen 1.1 196
Xiaoling 64.2 197
Xiaoling 80.4 198 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
Edwin Chen 1.1 199
Xiaoling 80.4 200 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 1.1 201
Ellie Zhang 30.1 202 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 1.1 203
204
205 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
206
207
208 (% style="color:blue" %)**Register the device**
209
Xiaoling 14.13 210 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
Edwin Chen 1.1 211
212
213 (% style="color:blue" %)**Add APP EUI and DEV EUI**
214
Ellie Zhang 30.1 215 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
Edwin Chen 1.1 216
217
218 (% style="color:blue" %)**Add APP EUI in the application**
219
220
Ellie Zhang 30.1 221 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
Edwin Chen 1.1 222
223
224 (% style="color:blue" %)**Add APP KEY**
225
Ellie Zhang 30.1 226 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
Edwin Chen 1.1 227
228
Xiaoling 80.4 229 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
Edwin Chen 1.1 230
231
Xiaoling 80.4 232 Press the button for 5 seconds to activate the LDS12-LB.
Edwin Chen 6.1 233
Edwin Chen 1.1 234 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
235
236 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
237
238
Xiaoling 82.8 239 == 2.3 ​Uplink Payload ==
Edwin Chen 1.1 240
Saxer Lin 85.1 241 === 2.3.1 Device Status, FPORT~=5 ===
242
Xiaoling 90.2 243
Saxer Lin 85.1 244 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
245
246 The Payload format is as below.
247
Xiaoling 90.2 248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 90.11 249 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
Saxer Lin 85.1 250 **Size(bytes)**
Xiaoling 90.11 251 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
Saxer Lin 85.1 252 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
253
254 Example parse in TTNv3
255
Xiaoling 90.17 256 (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
Saxer Lin 85.1 257
Xiaoling 90.17 258 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
Saxer Lin 85.1 259
Xiaoling 90.17 260 (% style="color:blue" %)**Frequency Band**:
Saxer Lin 85.1 261
262 0x01: EU868
263
264 0x02: US915
265
266 0x03: IN865
267
268 0x04: AU915
269
270 0x05: KZ865
271
272 0x06: RU864
273
274 0x07: AS923
275
276 0x08: AS923-1
277
278 0x09: AS923-2
279
280 0x0a: AS923-3
281
282 0x0b: CN470
283
284 0x0c: EU433
285
286 0x0d: KR920
287
288 0x0e: MA869
289
Xiaoling 90.17 290 (% style="color:blue" %)**Sub-Band**:
Saxer Lin 85.1 291
292 AU915 and US915:value 0x00 ~~ 0x08
293
294 CN470: value 0x0B ~~ 0x0C
295
296 Other Bands: Always 0x00
297
Xiaoling 90.17 298 (% style="color:blue" %)**Battery Info**:
Saxer Lin 85.1 299
300 Check the battery voltage.
301
302 Ex1: 0x0B45 = 2885mV
303
304 Ex2: 0x0B49 = 2889mV
305
306
Saxer Lin 89.1 307 === 2.3.2 Uplink Payload, FPORT~=2 ===
Saxer Lin 85.1 308
Xiaoling 90.2 309
Xiaoling 62.5 310 (((
Xiaoling 80.4 311 LDS12-LB will uplink payload via LoRaWAN with below payload format: 
Xiaoling 62.5 312 )))
Edwin Chen 1.1 313
Xiaoling 62.5 314 (((
Xiaoling 82.4 315 Uplink payload includes in total 11 bytes.
Xiaoling 62.5 316 )))
Edwin Chen 1.1 317
Xiaoling 90.7 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
319 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
Xiaoling 70.10 320 **Size(bytes)**
Xiaoling 90.9 321 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
Xiaoling 90.6 322 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
323 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
324 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
Xiaoling 90.14 325 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
Xiaoling 90.6 326 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
327 [[Message Type>>||anchor="HMessageType"]]
Xiaoling 82.4 328 )))
Edwin Chen 1.1 329
Xiaoling 82.6 330 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
Edwin Chen 1.1 331
332
Xiaoling 90.16 333 ==== (% style="color:blue" %)**Battery Info**(%%) ====
Edwin Chen 1.1 334
335
Xiaoling 80.4 336 Check the battery voltage for LDS12-LB.
Edwin Chen 1.1 337
Xiaoling 70.10 338 Ex1: 0x0B45 = 2885mV
Edwin Chen 1.1 339
Xiaoling 70.10 340 Ex2: 0x0B49 = 2889mV
Saxer Lin 46.1 341
Edwin Chen 1.1 342
Xiaoling 90.16 343 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
Xiaoling 67.7 344
345
Xiaoling 82.4 346 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
Edwin Chen 1.1 347
Xiaoling 14.22 348
Xiaoling 82.4 349 **Example**:
Edwin Chen 1.1 350
Xiaoling 82.4 351 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
Xiaoling 79.11 352
Xiaoling 82.4 353 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
Xiaoling 67.7 354
355
Xiaoling 90.16 356 ==== (% style="color:blue" %)**Distance**(%%) ====
Edwin Chen 10.1 357
Edwin Chen 1.1 358
Xiaoling 82.4 359 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
360
361
362 **Example**:
363
364 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
365
366
Xiaoling 90.16 367 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
Xiaoling 82.4 368
369
370 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
371
372
373 **Example**:
374
375 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
376
377 Customers can judge whether they need to adjust the environment based on the signal strength.
378
379
Xiaoling 90.16 380 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
Xiaoling 82.4 381
382
Xiaoling 82.13 383 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
Xiaoling 82.4 384
Xiaoling 82.13 385 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
Xiaoling 82.4 386
Xiaoling 70.10 387 **Example:**
Edwin Chen 1.1 388
Xiaoling 70.10 389 0x00: Normal uplink packet.
Edwin Chen 1.1 390
Xiaoling 70.10 391 0x01: Interrupt Uplink Packet.
Edwin Chen 1.1 392
393
Xiaoling 90.16 394 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
Xiaoling 62.5 395
Edwin Chen 1.1 396
Xiaoling 82.4 397 Characterize the internal temperature value of the sensor.
Edwin Chen 1.1 398
Xiaoling 82.4 399 **Example: **
400 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
401 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
Edwin Chen 1.1 402
Xiaoling 39.5 403
Xiaoling 90.16 404 ==== (% style="color:blue" %)**Message Type**(%%) ====
Edwin Chen 1.1 405
406
Saxer Lin 55.1 407 (((
Xiaoling 82.4 408 For a normal uplink payload, the message type is always 0x01.
Saxer Lin 55.1 409 )))
410
411 (((
Xiaoling 82.4 412 Valid Message Type:
Saxer Lin 55.1 413 )))
Saxer Lin 46.1 414
Xiaoling 82.4 415 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
Xiaoling 82.7 416 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
Xiaoling 82.11 417 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
Xiaoling 82.12 418 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
Saxer Lin 46.1 419
Xiaoling 90.3 420
Xiaoling 90.2 421 === 2.3.3 Decode payload in The Things Network ===
Xiaoling 82.8 422
423
Xiaoling 70.10 424 While using TTN network, you can add the payload format to decode the payload.
Edwin Chen 1.1 425
Xiaoling 82.10 426 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
Edwin Chen 1.1 427
428
Xiaoling 62.5 429 (((
Xiaoling 82.4 430 The payload decoder function for TTN is here:
Xiaoling 62.5 431 )))
Edwin Chen 1.1 432
Xiaoling 82.4 433 (((
434 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
435 )))
Edwin Chen 1.1 436
Xiaoling 82.4 437
Xiaoling 82.8 438 == 2.4 Uplink Interval ==
Edwin Chen 1.1 439
440
Xiaoling 80.4 441 The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
Edwin Chen 1.1 442
Xiaoling 70.10 443
Xiaoling 82.8 444 == 2.5 ​Show Data in DataCake IoT Server ==
Xiaoling 70.10 445
446
Xiaoling 62.5 447 (((
Xiaoling 70.10 448 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
Xiaoling 62.5 449 )))
Edwin Chen 1.1 450
451
Xiaoling 62.5 452 (((
Xiaoling 70.10 453 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
Xiaoling 62.5 454 )))
Edwin Chen 1.1 455
Xiaoling 62.5 456 (((
Xiaoling 70.10 457 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
Xiaoling 62.5 458 )))
Xiaoling 14.26 459
Saxer Lin 55.1 460
Xiaoling 70.10 461 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
Edwin Chen 1.1 462
463
Xiaoling 70.10 464 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
Edwin Chen 1.1 465
466
Xiaoling 70.10 467 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
Edwin Chen 1.1 468
Xiaoling 80.4 469 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
Edwin Chen 1.1 470
Xiaoling 70.10 471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
Xiaoling 62.5 472
Edwin Chen 1.1 473
Xiaoling 70.10 474 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
Edwin Chen 1.1 475
Xiaoling 70.10 476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
Edwin Chen 1.1 477
478
Xiaoling 70.10 479 == 2.6 Datalog Feature ==
Edwin Chen 1.1 480
481
Xiaoling 80.4 482 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
Xiaoling 62.5 483
484
Xiaoling 70.10 485 === 2.6.1 Ways to get datalog via LoRaWAN ===
Xiaoling 62.5 486
487
Xiaoling 80.4 488 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
Xiaoling 62.5 489
490 * (((
Xiaoling 80.4 491 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
Xiaoling 62.5 492 )))
493 * (((
Xiaoling 80.4 494 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
Xiaoling 62.5 495 )))
496
497 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
498
499 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
500
501
Xiaoling 70.10 502 === 2.6.2 Unix TimeStamp ===
Xiaoling 62.5 503
504
Xiaoling 80.4 505 LDS12-LB uses Unix TimeStamp format based on
Xiaoling 62.5 506
507 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
508
509 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
510
511 Below is the converter example
512
513 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
514
515
516 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
517
518
Xiaoling 70.10 519 === 2.6.3 Set Device Time ===
Xiaoling 62.5 520
521
522 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
523
Xiaoling 80.4 524 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
Xiaoling 62.5 525
526 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
527
528
Xiaoling 70.10 529 === 2.6.4 Poll sensor value ===
Xiaoling 62.5 530
531
532 Users can poll sensor values based on timestamps. Below is the downlink command.
533
534 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
Xiaoling 90.16 535 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
Xiaoling 62.5 536 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
537 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
538
539 (((
540 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
541 )))
542
543 (((
Xiaoling 64.8 544 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
Xiaoling 62.5 545 )))
546
547 (((
548 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
549 )))
550
551 (((
Xiaoling 80.4 552 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
Xiaoling 62.5 553 )))
554
555
Xiaoling 70.10 556 == 2.7 Frequency Plans ==
Edwin Chen 1.1 557
558
Xiaoling 80.4 559 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 1.1 560
561 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
562
563
Xiaoling 82.4 564 == 2.8 LiDAR ToF Measurement ==
565
566 === 2.8.1 Principle of Distance Measurement ===
567
568
569 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
570
Xiaoling 82.15 571 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
Xiaoling 82.4 572
573
574 === 2.8.2 Distance Measurement Characteristics ===
575
576
577 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
578
Xiaoling 82.15 579 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
Xiaoling 82.4 580
581
582 (((
583 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
584 )))
585
586 (((
587 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
588 )))
589
590 (((
591 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
592 )))
593
594
595 (((
596 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
597 )))
598
Xiaoling 82.15 599 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
Xiaoling 82.4 600
601 (((
602 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
603 )))
604
Xiaoling 82.15 605 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
Xiaoling 82.4 606
607 (((
608 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
609 )))
610
611
Xiaoling 82.15 612 === 2.8.3 Notice of usage ===
Xiaoling 82.4 613
614
615 Possible invalid /wrong reading for LiDAR ToF tech:
616
617 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
618 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
619 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
620 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
621
622 === 2.8.4  Reflectivity of different objects ===
623
624
625 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
Xiaoling 82.15 626 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
Xiaoling 82.4 627 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
628 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
629 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
630 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
631 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
632 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
633 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
634 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
635 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
636 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
637 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
638 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
639 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
640 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
641 |(% style="width:53px" %)15|(% style="width:229px" %)(((
642 Unpolished white metal surface
643 )))|(% style="width:93px" %)130%
644 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
645 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
646 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
647
Xiaoling 80.4 648 = 3. Configure LDS12-LB =
Edwin Chen 1.1 649
kai 16.4 650 == 3.1 Configure Methods ==
Edwin Chen 1.1 651
652
Xiaoling 80.4 653 LDS12-LB supports below configure method:
Edwin Chen 1.1 654
655 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
Xiaoling 67.20 656
Edwin Chen 11.1 657 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
Xiaoling 67.20 658
Edwin Chen 1.1 659 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
660
661 == 3.2 General Commands ==
662
663
664 These commands are to configure:
665
666 * General system settings like: uplink interval.
Xiaoling 67.20 667
Edwin Chen 1.1 668 * LoRaWAN protocol & radio related command.
669
670 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
671
672 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
673
674
Xiaoling 80.4 675 == 3.3 Commands special design for LDS12-LB ==
Edwin Chen 1.1 676
677
Xiaoling 80.4 678 These commands only valid for LDS12-LB, as below:
Edwin Chen 1.1 679
680
681 === 3.3.1 Set Transmit Interval Time ===
682
683
Xiaoling 62.5 684 (((
Edwin Chen 1.1 685 Feature: Change LoRaWAN End Node Transmit Interval.
Xiaoling 62.5 686 )))
687
688 (((
Edwin Chen 1.1 689 (% style="color:blue" %)**AT Command: AT+TDC**
Xiaoling 62.5 690 )))
Edwin Chen 1.1 691
Xiaoling 14.34 692 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 82.16 693 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
Edwin Chen 1.1 694 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
695 30000
696 OK
697 the interval is 30000ms = 30s
698 )))
699 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
700 OK
701 Set transmit interval to 60000ms = 60 seconds
702 )))
703
Xiaoling 62.5 704 (((
Edwin Chen 1.1 705 (% style="color:blue" %)**Downlink Command: 0x01**
Xiaoling 62.5 706 )))
Edwin Chen 1.1 707
Xiaoling 62.5 708 (((
Edwin Chen 1.1 709 Format: Command Code (0x01) followed by 3 bytes time value.
Xiaoling 62.5 710 )))
Edwin Chen 1.1 711
Xiaoling 62.5 712 (((
Edwin Chen 1.1 713 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
Xiaoling 62.5 714 )))
Edwin Chen 1.1 715
Xiaoling 62.5 716 * (((
717 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
718 )))
719 * (((
Xiaoling 73.8 720 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
Xiaoling 82.22 721
722
723
Xiaoling 82.5 724 )))
Xiaoling 79.19 725
Xiaoling 70.11 726 === 3.3.2 Set Interrupt Mode ===
Xiaoling 62.5 727
728
Saxer Lin 43.1 729 Feature, Set Interrupt mode for PA8 of pin.
Edwin Chen 1.1 730
Saxer Lin 46.1 731 When AT+INTMOD=0 is set, PA8 is used as a digital input port.
732
Edwin Chen 1.1 733 (% style="color:blue" %)**AT Command: AT+INTMOD**
734
Xiaoling 14.34 735 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 82.16 736 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Edwin Chen 1.1 737 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
738 0
739 OK
740 the mode is 0 =Disable Interrupt
741 )))
742 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
743 Set Transmit Interval
744 0. (Disable Interrupt),
745 ~1. (Trigger by rising and falling edge)
746 2. (Trigger by falling edge)
747 3. (Trigger by rising edge)
748 )))|(% style="width:157px" %)OK
749
750 (% style="color:blue" %)**Downlink Command: 0x06**
751
752 Format: Command Code (0x06) followed by 3 bytes.
753
754 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
755
756 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
Xiaoling 62.6 757
Edwin Chen 1.1 758 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
759
Saxer Lin 90.1 760 === 3.3.3  Set Power Output Duration ===
761
762 Control the output duration 3V3 . Before each sampling, device will
763
764 ~1. first enable the power output to external sensor,
765
766 2. keep it on as per duration, read sensor value and construct uplink payload
767
768 3. final, close the power output.
769
770 (% style="color:blue" %)**AT Command: AT+3V3T**
771
772 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
773 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
774 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
775 OK
776 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
777 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
778
779 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
780 Format: Command Code (0x07) followed by 3 bytes.
781
782 The first byte is 01,the second and third bytes are the time to turn on.
783
784 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
785 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
786
kai 16.4 787 = 4. Battery & Power Consumption =
Xiaoling 14.45 788
Edwin Chen 1.1 789
Xiaoling 80.4 790 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 1.1 791
792 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
793
794
kai 16.4 795 = 5. OTA Firmware update =
Edwin Chen 1.1 796
797
Edwin Chen 13.1 798 (% class="wikigeneratedid" %)
Xiaoling 80.4 799 User can change firmware LDS12-LB to:
Edwin Chen 1.1 800
Edwin Chen 13.1 801 * Change Frequency band/ region.
Xiaoling 62.7 802
Edwin Chen 13.1 803 * Update with new features.
Xiaoling 62.7 804
Edwin Chen 13.1 805 * Fix bugs.
Edwin Chen 1.1 806
Xiaoling 82.20 807 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
Edwin Chen 1.1 808
kai 31.1 809 Methods to Update Firmware:
Edwin Chen 1.1 810
Xiaoling 79.15 811 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
Xiaoling 62.7 812
Xiaoling 70.18 813 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 1.1 814
kai 31.1 815 = 6. FAQ =
Edwin Chen 1.1 816
Xiaoling 80.4 817 == 6.1 What is the frequency plan for LDS12-LB? ==
Edwin Chen 1.1 818
Xiaoling 62.7 819
Xiaoling 80.4 820 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
Xiaoling 62.7 821
Edwin Chen 1.1 822
Xiaoling 80.4 823 = 7. Trouble Shooting =
Edwin Chen 1.1 824
Xiaoling 80.4 825 == 7.1 AT Command input doesn't work ==
Edwin Chen 1.1 826
Xiaoling 70.14 827
Xiaoling 80.4 828 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
Xiaoling 70.14 829
830
Xiaoling 80.4 831 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
Xiaoling 70.14 832
833
Xiaoling 80.4 834 (((
Xiaoling 82.21 835 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
Xiaoling 80.4 836 )))
Xiaoling 70.14 837
Xiaoling 80.4 838 (((
Xiaoling 82.21 839 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
Xiaoling 80.4 840 )))
Xiaoling 70.14 841
842
Xiaoling 80.4 843 (((
844 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
845 )))
Xiaoling 70.14 846
Xiaoling 79.7 847 (((
Xiaoling 82.21 848 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
Xiaoling 79.7 849 )))
Xiaoling 70.14 850
851
852 = 8. Order Info =
853
854
Xiaoling 80.4 855 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
Xiaoling 70.14 856
Xiaoling 70.12 857 (% style="color:red" %)**XXX**(%%): **The default frequency band**
Edwin Chen 1.1 858
Ellie Zhang 38.1 859 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
Edwin Chen 1.1 860
Ellie Zhang 38.1 861 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
Edwin Chen 1.1 862
Ellie Zhang 38.1 863 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
Edwin Chen 1.1 864
Ellie Zhang 38.1 865 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
Edwin Chen 1.1 866
Ellie Zhang 38.1 867 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
Edwin Chen 1.1 868
Ellie Zhang 38.1 869 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
Edwin Chen 1.1 870
Ellie Zhang 38.1 871 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
Edwin Chen 1.1 872
Ellie Zhang 38.1 873 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
Edwin Chen 1.1 874
Xiaoling 70.14 875 = 9. ​Packing Info =
Xiaoling 67.11 876
877
Ellie Zhang 39.1 878 (% style="color:#037691" %)**Package Includes**:
Edwin Chen 1.1 879
Xiaoling 80.4 880 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
Edwin Chen 1.1 881
Ellie Zhang 39.1 882 (% style="color:#037691" %)**Dimension and weight**:
Edwin Chen 1.1 883
kai 31.1 884 * Device Size: cm
Edwin Chen 1.1 885
kai 31.1 886 * Device Weight: g
Edwin Chen 1.1 887
kai 31.1 888 * Package Size / pcs : cm
Edwin Chen 1.1 889
kai 31.1 890 * Weight / pcs : g
Edwin Chen 1.1 891
Xiaoling 70.14 892 = 10. Support =
893
894
kai 31.1 895 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 39.6 896
897 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].