Version 90.16 by Xiaoling on 2023/07/15 15:51

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230614153353-1.png]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19 = 1. Introduction =
20
21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22
23
24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25
26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27
28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29
30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31
32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33
34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35
36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37
38 [[image:image-20230615152941-1.png||height="459" width="800"]]
39
40
41 == 1.2 ​Features ==
42
43
44 * LoRaWAN 1.0.3 Class A
45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 * Ultra-low power consumption
47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 * Monitor Battery Level
51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
53 * AT Commands to change parameters
54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57 == 1.3 Specification ==
58
59
60 (% style="color:#037691" %)**Common DC Characteristics:**
61
62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 * Operating Temperature: -40 ~~ 85°C
64
65 (% style="color:#037691" %)**Probe Specification:**
66
67 * Storage temperature:-20℃~~75℃
68 * Operating temperature : -20℃~~60℃
69 * Measure Distance:
70 ** 0.1m ~~ 12m @ 90% Reflectivity
71 ** 0.1m ~~ 4m @ 10% Reflectivity
72 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Distance resolution : 5mm
74 * Ambient light immunity : 70klux
75 * Enclosure rating : IP65
76 * Light source : LED
77 * Central wavelength : 850nm
78 * FOV : 3.6°
79 * Material of enclosure : ABS+PC
80 * Wire length : 25cm
81
82 (% style="color:#037691" %)**LoRa Spec:**
83
84 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 * Max +22 dBm constant RF output vs.
86 * RX sensitivity: down to -139 dBm.
87 * Excellent blocking immunity
88
89 (% style="color:#037691" %)**Battery:**
90
91 * Li/SOCI2 un-chargeable battery
92 * Capacity: 8500mAh
93 * Self-Discharge: <1% / Year @ 25°C
94 * Max continuously current: 130mA
95 * Max boost current: 2A, 1 second
96
97 (% style="color:#037691" %)**Power Consumption**
98
99 * Sleep Mode: 5uA @ 3.3v
100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101
102 == 1.4 Applications ==
103
104
105 * Horizontal distance measurement
106 * Parking management system
107 * Object proximity and presence detection
108 * Intelligent trash can management system
109 * Robot obstacle avoidance
110 * Automatic control
111 * Sewer
112
113 (% style="display:none" %)
114
115 == 1.5 Sleep mode and working mode ==
116
117
118 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119
120 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121
122
123 == 1.6 Button & LEDs ==
124
125
126 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
127
128
129 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
131 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 )))
135 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 )))
140 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141
142 == 1.7 BLE connection ==
143
144
145 LDS12-LB support BLE remote configure.
146
147 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148
149 * Press button to send an uplink
150 * Press button to active device.
151 * Device Power on or reset.
152
153 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154
155
156 == 1.8 Pin Definitions ==
157
158 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
159
160
161 == 1.9 Mechanical ==
162
163
164 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
165
166
167 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
168
169
170 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
171
172
173 (% style="color:blue" %)**Probe Mechanical:**
174
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177
178
179 = 2. Configure LDS12-LB to connect to LoRaWAN network =
180
181 == 2.1 How it works ==
182
183
184 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
185
186 (% style="display:none" %) (%%)
187
188 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
189
190
191 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
192
193 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194
195 [[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
196
197
198 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
199
200 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
201
202 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
203
204
205 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
206
207
208 (% style="color:blue" %)**Register the device**
209
210 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
211
212
213 (% style="color:blue" %)**Add APP EUI and DEV EUI**
214
215 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
216
217
218 (% style="color:blue" %)**Add APP EUI in the application**
219
220
221 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
222
223
224 (% style="color:blue" %)**Add APP KEY**
225
226 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
227
228
229 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
230
231
232 Press the button for 5 seconds to activate the LDS12-LB.
233
234 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
235
236 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
237
238
239 == 2.3 ​Uplink Payload ==
240
241 === 2.3.1 Device Status, FPORT~=5 ===
242
243
244 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
245
246 The Payload format is as below.
247
248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
249 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
250 **Size(bytes)**
251 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
252 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
253
254 Example parse in TTNv3
255
256 **Sensor Model**: For LDS12-LB, this value is 0x24
257
258 **Firmware Version**: 0x0100, Means: v1.0.0 version
259
260 **Frequency Band**:
261
262 0x01: EU868
263
264 0x02: US915
265
266 0x03: IN865
267
268 0x04: AU915
269
270 0x05: KZ865
271
272 0x06: RU864
273
274 0x07: AS923
275
276 0x08: AS923-1
277
278 0x09: AS923-2
279
280 0x0a: AS923-3
281
282 0x0b: CN470
283
284 0x0c: EU433
285
286 0x0d: KR920
287
288 0x0e: MA869
289
290 **Sub-Band**:
291
292 AU915 and US915:value 0x00 ~~ 0x08
293
294 CN470: value 0x0B ~~ 0x0C
295
296 Other Bands: Always 0x00
297
298 **Battery Info**:
299
300 Check the battery voltage.
301
302 Ex1: 0x0B45 = 2885mV
303
304 Ex2: 0x0B49 = 2889mV
305
306
307 === 2.3.2 Uplink Payload, FPORT~=2 ===
308
309
310 (((
311 LDS12-LB will uplink payload via LoRaWAN with below payload format: 
312 )))
313
314 (((
315 Uplink payload includes in total 11 bytes.
316 )))
317
318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
319 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
320 **Size(bytes)**
321 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
322 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
323 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
324 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
325 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
326 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
327 [[Message Type>>||anchor="HMessageType"]]
328 )))
329
330 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
331
332
333 ==== (% style="color:blue" %)**Battery Info**(%%) ====
334
335
336 Check the battery voltage for LDS12-LB.
337
338 Ex1: 0x0B45 = 2885mV
339
340 Ex2: 0x0B49 = 2889mV
341
342
343 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
344
345
346 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
347
348
349 **Example**:
350
351 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
352
353 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
354
355
356 ==== (% style="color:blue" %)**Distance**(%%) ====
357
358
359 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
360
361
362 **Example**:
363
364 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
365
366
367 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
368
369
370 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
371
372
373 **Example**:
374
375 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
376
377 Customers can judge whether they need to adjust the environment based on the signal strength.
378
379
380 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
381
382
383 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
384
385 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
386
387 **Example:**
388
389 0x00: Normal uplink packet.
390
391 0x01: Interrupt Uplink Packet.
392
393
394 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
395
396
397 Characterize the internal temperature value of the sensor.
398
399 **Example: **
400 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
401 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
402
403
404 ==== (% style="color:blue" %)**Message Type**(%%) ====
405
406
407 (((
408 For a normal uplink payload, the message type is always 0x01.
409 )))
410
411 (((
412 Valid Message Type:
413 )))
414
415 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
416 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
417 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
418 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
419
420
421 === 2.3.3 Decode payload in The Things Network ===
422
423
424 While using TTN network, you can add the payload format to decode the payload.
425
426 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
427
428
429 (((
430 The payload decoder function for TTN is here:
431 )))
432
433 (((
434 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
435 )))
436
437
438 == 2.4 Uplink Interval ==
439
440
441 The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
442
443
444 == 2.5 ​Show Data in DataCake IoT Server ==
445
446
447 (((
448 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
449 )))
450
451
452 (((
453 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
454 )))
455
456 (((
457 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
458 )))
459
460
461 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
462
463
464 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
465
466
467 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
468
469 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
470
471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
472
473
474 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
475
476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
477
478
479 == 2.6 Datalog Feature ==
480
481
482 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
483
484
485 === 2.6.1 Ways to get datalog via LoRaWAN ===
486
487
488 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
489
490 * (((
491 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
492 )))
493 * (((
494 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
495 )))
496
497 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
498
499 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
500
501
502 === 2.6.2 Unix TimeStamp ===
503
504
505 LDS12-LB uses Unix TimeStamp format based on
506
507 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
508
509 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
510
511 Below is the converter example
512
513 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
514
515
516 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
517
518
519 === 2.6.3 Set Device Time ===
520
521
522 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
523
524 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
525
526 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
527
528
529 === 2.6.4 Poll sensor value ===
530
531
532 Users can poll sensor values based on timestamps. Below is the downlink command.
533
534 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
535 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
536 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
537 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
538
539 (((
540 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
541 )))
542
543 (((
544 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
545 )))
546
547 (((
548 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
549 )))
550
551 (((
552 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
553 )))
554
555
556 == 2.7 Frequency Plans ==
557
558
559 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
560
561 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
562
563
564 == 2.8 LiDAR ToF Measurement ==
565
566 === 2.8.1 Principle of Distance Measurement ===
567
568
569 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
570
571 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
572
573
574 === 2.8.2 Distance Measurement Characteristics ===
575
576
577 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
578
579 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
580
581
582 (((
583 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
584 )))
585
586 (((
587 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
588 )))
589
590 (((
591 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
592 )))
593
594
595 (((
596 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
597 )))
598
599 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
600
601 (((
602 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
603 )))
604
605 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
606
607 (((
608 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
609 )))
610
611
612 === 2.8.3 Notice of usage ===
613
614
615 Possible invalid /wrong reading for LiDAR ToF tech:
616
617 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
618 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
619 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
620 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
621
622 === 2.8.4  Reflectivity of different objects ===
623
624
625 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
626 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
627 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
628 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
629 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
630 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
631 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
632 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
633 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
634 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
635 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
636 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
637 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
638 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
639 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
640 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
641 |(% style="width:53px" %)15|(% style="width:229px" %)(((
642 Unpolished white metal surface
643 )))|(% style="width:93px" %)130%
644 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
645 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
646 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
647
648 = 3. Configure LDS12-LB =
649
650 == 3.1 Configure Methods ==
651
652
653 LDS12-LB supports below configure method:
654
655 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
656
657 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
658
659 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
660
661 == 3.2 General Commands ==
662
663
664 These commands are to configure:
665
666 * General system settings like: uplink interval.
667
668 * LoRaWAN protocol & radio related command.
669
670 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
671
672 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
673
674
675 == 3.3 Commands special design for LDS12-LB ==
676
677
678 These commands only valid for LDS12-LB, as below:
679
680
681 === 3.3.1 Set Transmit Interval Time ===
682
683
684 (((
685 Feature: Change LoRaWAN End Node Transmit Interval.
686 )))
687
688 (((
689 (% style="color:blue" %)**AT Command: AT+TDC**
690 )))
691
692 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
693 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
694 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
695 30000
696 OK
697 the interval is 30000ms = 30s
698 )))
699 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
700 OK
701 Set transmit interval to 60000ms = 60 seconds
702 )))
703
704 (((
705 (% style="color:blue" %)**Downlink Command: 0x01**
706 )))
707
708 (((
709 Format: Command Code (0x01) followed by 3 bytes time value.
710 )))
711
712 (((
713 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
714 )))
715
716 * (((
717 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
718 )))
719 * (((
720 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
721
722
723
724 )))
725
726 === 3.3.2 Set Interrupt Mode ===
727
728
729 Feature, Set Interrupt mode for PA8 of pin.
730
731 When AT+INTMOD=0 is set, PA8 is used as a digital input port.
732
733 (% style="color:blue" %)**AT Command: AT+INTMOD**
734
735 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
736 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
737 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
738 0
739 OK
740 the mode is 0 =Disable Interrupt
741 )))
742 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
743 Set Transmit Interval
744 0. (Disable Interrupt),
745 ~1. (Trigger by rising and falling edge)
746 2. (Trigger by falling edge)
747 3. (Trigger by rising edge)
748 )))|(% style="width:157px" %)OK
749
750 (% style="color:blue" %)**Downlink Command: 0x06**
751
752 Format: Command Code (0x06) followed by 3 bytes.
753
754 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
755
756 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
757
758 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
759
760 === 3.3.3  Set Power Output Duration ===
761
762 Control the output duration 3V3 . Before each sampling, device will
763
764 ~1. first enable the power output to external sensor,
765
766 2. keep it on as per duration, read sensor value and construct uplink payload
767
768 3. final, close the power output.
769
770 (% style="color:blue" %)**AT Command: AT+3V3T**
771
772 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
773 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
774 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
775 OK
776 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
777 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
778
779 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
780 Format: Command Code (0x07) followed by 3 bytes.
781
782 The first byte is 01,the second and third bytes are the time to turn on.
783
784 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
785 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
786
787 = 4. Battery & Power Consumption =
788
789
790 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
791
792 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
793
794
795 = 5. OTA Firmware update =
796
797
798 (% class="wikigeneratedid" %)
799 User can change firmware LDS12-LB to:
800
801 * Change Frequency band/ region.
802
803 * Update with new features.
804
805 * Fix bugs.
806
807 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
808
809 Methods to Update Firmware:
810
811 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
812
813 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
814
815 = 6. FAQ =
816
817 == 6.1 What is the frequency plan for LDS12-LB? ==
818
819
820 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
821
822
823 = 7. Trouble Shooting =
824
825 == 7.1 AT Command input doesn't work ==
826
827
828 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
829
830
831 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
832
833
834 (((
835 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
836 )))
837
838 (((
839 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
840 )))
841
842
843 (((
844 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
845 )))
846
847 (((
848 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
849 )))
850
851
852 = 8. Order Info =
853
854
855 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
856
857 (% style="color:red" %)**XXX**(%%): **The default frequency band**
858
859 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
860
861 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
862
863 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
864
865 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
866
867 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
868
869 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
870
871 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
872
873 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
874
875 = 9. ​Packing Info =
876
877
878 (% style="color:#037691" %)**Package Includes**:
879
880 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
881
882 (% style="color:#037691" %)**Dimension and weight**:
883
884 * Device Size: cm
885
886 * Device Weight: g
887
888 * Package Size / pcs : cm
889
890 * Weight / pcs : g
891
892 = 10. Support =
893
894
895 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
896
897 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].