Version 90.13 by Xiaoling on 2023/07/15 15:47

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230614153353-1.png]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19 = 1. Introduction =
20
21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22
23
24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25
26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27
28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29
30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31
32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33
34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35
36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37
38 [[image:image-20230615152941-1.png||height="459" width="800"]]
39
40
41 == 1.2 ​Features ==
42
43
44 * LoRaWAN 1.0.3 Class A
45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 * Ultra-low power consumption
47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 * Monitor Battery Level
51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
53 * AT Commands to change parameters
54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57 == 1.3 Specification ==
58
59
60 (% style="color:#037691" %)**Common DC Characteristics:**
61
62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 * Operating Temperature: -40 ~~ 85°C
64
65 (% style="color:#037691" %)**Probe Specification:**
66
67 * Storage temperature:-20℃~~75℃
68 * Operating temperature : -20℃~~60℃
69 * Measure Distance:
70 ** 0.1m ~~ 12m @ 90% Reflectivity
71 ** 0.1m ~~ 4m @ 10% Reflectivity
72 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Distance resolution : 5mm
74 * Ambient light immunity : 70klux
75 * Enclosure rating : IP65
76 * Light source : LED
77 * Central wavelength : 850nm
78 * FOV : 3.6°
79 * Material of enclosure : ABS+PC
80 * Wire length : 25cm
81
82 (% style="color:#037691" %)**LoRa Spec:**
83
84 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 * Max +22 dBm constant RF output vs.
86 * RX sensitivity: down to -139 dBm.
87 * Excellent blocking immunity
88
89 (% style="color:#037691" %)**Battery:**
90
91 * Li/SOCI2 un-chargeable battery
92 * Capacity: 8500mAh
93 * Self-Discharge: <1% / Year @ 25°C
94 * Max continuously current: 130mA
95 * Max boost current: 2A, 1 second
96
97 (% style="color:#037691" %)**Power Consumption**
98
99 * Sleep Mode: 5uA @ 3.3v
100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101
102 == 1.4 Applications ==
103
104
105 * Horizontal distance measurement
106 * Parking management system
107 * Object proximity and presence detection
108 * Intelligent trash can management system
109 * Robot obstacle avoidance
110 * Automatic control
111 * Sewer
112
113 (% style="display:none" %)
114
115 == 1.5 Sleep mode and working mode ==
116
117
118 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119
120 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121
122
123 == 1.6 Button & LEDs ==
124
125
126 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
127
128
129 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
131 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 )))
135 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 )))
140 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141
142 == 1.7 BLE connection ==
143
144
145 LDS12-LB support BLE remote configure.
146
147 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148
149 * Press button to send an uplink
150 * Press button to active device.
151 * Device Power on or reset.
152
153 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154
155
156 == 1.8 Pin Definitions ==
157
158 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
159
160
161 == 1.9 Mechanical ==
162
163
164 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
165
166
167 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
168
169
170 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
171
172
173 (% style="color:blue" %)**Probe Mechanical:**
174
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177
178
179 = 2. Configure LDS12-LB to connect to LoRaWAN network =
180
181 == 2.1 How it works ==
182
183
184 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
185
186 (% style="display:none" %) (%%)
187
188 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
189
190
191 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
192
193 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194
195 [[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
196
197
198 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
199
200 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
201
202 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
203
204
205 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
206
207
208 (% style="color:blue" %)**Register the device**
209
210 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
211
212
213 (% style="color:blue" %)**Add APP EUI and DEV EUI**
214
215 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
216
217
218 (% style="color:blue" %)**Add APP EUI in the application**
219
220
221 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
222
223
224 (% style="color:blue" %)**Add APP KEY**
225
226 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
227
228
229 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
230
231
232 Press the button for 5 seconds to activate the LDS12-LB.
233
234 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
235
236 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
237
238
239 == 2.3 ​Uplink Payload ==
240
241
242 === 2.3.1 Device Status, FPORT~=5 ===
243
244
245 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
246
247 The Payload format is as below.
248
249 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
250 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
251 **Size(bytes)**
252 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
253 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
254
255 Example parse in TTNv3
256
257 **Sensor Model**: For LDS12-LB, this value is 0x24
258
259 **Firmware Version**: 0x0100, Means: v1.0.0 version
260
261 **Frequency Band**:
262
263 0x01: EU868
264
265 0x02: US915
266
267 0x03: IN865
268
269 0x04: AU915
270
271 0x05: KZ865
272
273 0x06: RU864
274
275 0x07: AS923
276
277 0x08: AS923-1
278
279 0x09: AS923-2
280
281 0x0a: AS923-3
282
283 0x0b: CN470
284
285 0x0c: EU433
286
287 0x0d: KR920
288
289 0x0e: MA869
290
291 **Sub-Band**:
292
293 AU915 and US915:value 0x00 ~~ 0x08
294
295 CN470: value 0x0B ~~ 0x0C
296
297 Other Bands: Always 0x00
298
299 **Battery Info**:
300
301 Check the battery voltage.
302
303 Ex1: 0x0B45 = 2885mV
304
305 Ex2: 0x0B49 = 2889mV
306
307
308 === 2.3.2 Uplink Payload, FPORT~=2 ===
309
310
311 (((
312 LDS12-LB will uplink payload via LoRaWAN with below payload format: 
313 )))
314
315 (((
316 Uplink payload includes in total 11 bytes.
317 )))
318
319 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
320 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
321 **Size(bytes)**
322 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
323 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
324 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
325 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
326 [[Interrupt flag & Interrupt_level||anchor="HInterruptPin26A0InterruptLevel"]]
327 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
328 [[Message Type>>||anchor="HMessageType"]]
329 )))
330
331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
332
333
334 ==== (% style="color:blue" %)**Battery Info**(%%) ====
335
336
337 Check the battery voltage for LDS12-LB.
338
339 Ex1: 0x0B45 = 2885mV
340
341 Ex2: 0x0B49 = 2889mV
342
343
344 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
345
346
347 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
348
349
350 **Example**:
351
352 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
353
354 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
355
356
357 ==== (% style="color:blue" %)**Distance**(%%) ====
358
359
360 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
361
362
363 **Example**:
364
365 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
366
367
368 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
369
370
371 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
372
373
374 **Example**:
375
376 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
377
378 Customers can judge whether they need to adjust the environment based on the signal strength.
379
380
381 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
382
383
384 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
385
386 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]].
387
388 **Example:**
389
390 0x00: Normal uplink packet.
391
392 0x01: Interrupt Uplink Packet.
393
394
395 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
396
397
398 Characterize the internal temperature value of the sensor.
399
400 **Example: **
401 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
402 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
403
404
405 ==== (% style="color:blue" %)**Message Type**(%%) ====
406
407
408 (((
409 For a normal uplink payload, the message type is always 0x01.
410 )))
411
412 (((
413 Valid Message Type:
414 )))
415
416 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
417 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
418 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
419 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
420
421
422 === 2.3.3 Decode payload in The Things Network ===
423
424
425 While using TTN network, you can add the payload format to decode the payload.
426
427 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
428
429
430 (((
431 The payload decoder function for TTN is here:
432 )))
433
434 (((
435 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
436 )))
437
438
439 == 2.4 Uplink Interval ==
440
441
442 The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
443
444
445 == 2.5 ​Show Data in DataCake IoT Server ==
446
447
448 (((
449 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
450 )))
451
452
453 (((
454 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
455 )))
456
457 (((
458 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
459 )))
460
461
462 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
463
464
465 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
466
467
468 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
469
470 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
471
472 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
473
474
475 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
476
477 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
478
479
480 == 2.6 Datalog Feature ==
481
482
483 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
484
485
486 === 2.6.1 Ways to get datalog via LoRaWAN ===
487
488
489 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
490
491 * (((
492 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
493 )))
494 * (((
495 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
496 )))
497
498 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
499
500 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
501
502
503 === 2.6.2 Unix TimeStamp ===
504
505
506 LDS12-LB uses Unix TimeStamp format based on
507
508 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
509
510 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
511
512 Below is the converter example
513
514 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
515
516
517 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
518
519
520 === 2.6.3 Set Device Time ===
521
522
523 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
524
525 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
526
527 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
528
529
530 === 2.6.4 Poll sensor value ===
531
532
533 Users can poll sensor values based on timestamps. Below is the downlink command.
534
535 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
536 |(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
537 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
538 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
539
540 (((
541 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
542 )))
543
544 (((
545 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
546 )))
547
548 (((
549 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
550 )))
551
552 (((
553 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
554 )))
555
556
557 == 2.7 Frequency Plans ==
558
559
560 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
561
562 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
563
564
565 == 2.8 LiDAR ToF Measurement ==
566
567 === 2.8.1 Principle of Distance Measurement ===
568
569
570 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
571
572 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
573
574
575 === 2.8.2 Distance Measurement Characteristics ===
576
577
578 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
579
580 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
581
582
583 (((
584 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
585 )))
586
587 (((
588 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
589 )))
590
591 (((
592 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
593 )))
594
595
596 (((
597 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
598 )))
599
600 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
601
602 (((
603 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
604 )))
605
606 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
607
608 (((
609 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
610 )))
611
612
613 === 2.8.3 Notice of usage ===
614
615
616 Possible invalid /wrong reading for LiDAR ToF tech:
617
618 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
619 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
620 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
621 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
622
623 === 2.8.4  Reflectivity of different objects ===
624
625
626 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
627 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
628 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
629 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
630 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
631 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
632 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
633 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
634 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
635 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
636 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
637 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
638 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
639 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
640 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
641 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
642 |(% style="width:53px" %)15|(% style="width:229px" %)(((
643 Unpolished white metal surface
644 )))|(% style="width:93px" %)130%
645 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
646 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
647 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
648
649 = 3. Configure LDS12-LB =
650
651 == 3.1 Configure Methods ==
652
653
654 LDS12-LB supports below configure method:
655
656 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
657
658 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
659
660 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
661
662 == 3.2 General Commands ==
663
664
665 These commands are to configure:
666
667 * General system settings like: uplink interval.
668
669 * LoRaWAN protocol & radio related command.
670
671 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
672
673 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
674
675
676 == 3.3 Commands special design for LDS12-LB ==
677
678
679 These commands only valid for LDS12-LB, as below:
680
681
682 === 3.3.1 Set Transmit Interval Time ===
683
684
685 (((
686 Feature: Change LoRaWAN End Node Transmit Interval.
687 )))
688
689 (((
690 (% style="color:blue" %)**AT Command: AT+TDC**
691 )))
692
693 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
694 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
695 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
696 30000
697 OK
698 the interval is 30000ms = 30s
699 )))
700 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
701 OK
702 Set transmit interval to 60000ms = 60 seconds
703 )))
704
705 (((
706 (% style="color:blue" %)**Downlink Command: 0x01**
707 )))
708
709 (((
710 Format: Command Code (0x01) followed by 3 bytes time value.
711 )))
712
713 (((
714 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
715 )))
716
717 * (((
718 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
719 )))
720 * (((
721 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
722
723
724
725 )))
726
727 === 3.3.2 Set Interrupt Mode ===
728
729
730 Feature, Set Interrupt mode for PA8 of pin.
731
732 When AT+INTMOD=0 is set, PA8 is used as a digital input port.
733
734 (% style="color:blue" %)**AT Command: AT+INTMOD**
735
736 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
737 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
738 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
739 0
740 OK
741 the mode is 0 =Disable Interrupt
742 )))
743 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
744 Set Transmit Interval
745 0. (Disable Interrupt),
746 ~1. (Trigger by rising and falling edge)
747 2. (Trigger by falling edge)
748 3. (Trigger by rising edge)
749 )))|(% style="width:157px" %)OK
750
751 (% style="color:blue" %)**Downlink Command: 0x06**
752
753 Format: Command Code (0x06) followed by 3 bytes.
754
755 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
756
757 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
758
759 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
760
761 === 3.3.3  Set Power Output Duration ===
762
763 Control the output duration 3V3 . Before each sampling, device will
764
765 ~1. first enable the power output to external sensor,
766
767 2. keep it on as per duration, read sensor value and construct uplink payload
768
769 3. final, close the power output.
770
771 (% style="color:blue" %)**AT Command: AT+3V3T**
772
773 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
774 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
775 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
776 OK
777 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
778 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
779
780 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
781 Format: Command Code (0x07) followed by 3 bytes.
782
783 The first byte is 01,the second and third bytes are the time to turn on.
784
785 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
786 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
787
788 = 4. Battery & Power Consumption =
789
790
791 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
792
793 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
794
795
796 = 5. OTA Firmware update =
797
798
799 (% class="wikigeneratedid" %)
800 User can change firmware LDS12-LB to:
801
802 * Change Frequency band/ region.
803
804 * Update with new features.
805
806 * Fix bugs.
807
808 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
809
810 Methods to Update Firmware:
811
812 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
813
814 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
815
816 = 6. FAQ =
817
818 == 6.1 What is the frequency plan for LDS12-LB? ==
819
820
821 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
822
823
824 = 7. Trouble Shooting =
825
826 == 7.1 AT Command input doesn't work ==
827
828
829 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
830
831
832 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
833
834
835 (((
836 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
837 )))
838
839 (((
840 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
841 )))
842
843
844 (((
845 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
846 )))
847
848 (((
849 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
850 )))
851
852
853 = 8. Order Info =
854
855
856 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
857
858 (% style="color:red" %)**XXX**(%%): **The default frequency band**
859
860 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
861
862 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
863
864 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
865
866 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
867
868 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
869
870 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
871
872 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
873
874 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
875
876 = 9. ​Packing Info =
877
878
879 (% style="color:#037691" %)**Package Includes**:
880
881 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
882
883 (% style="color:#037691" %)**Dimension and weight**:
884
885 * Device Size: cm
886
887 * Device Weight: g
888
889 * Package Size / pcs : cm
890
891 * Weight / pcs : g
892
893 = 10. Support =
894
895
896 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
897
898 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].