Version 82.9 by Xiaoling on 2023/06/14 16:59

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230614153353-1.png]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19 = 1. Introduction =
20
21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22
23
24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25
26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27
28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29
30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31
32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33
34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35
36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37
38 [[image:image-20230614162334-2.png||height="468" width="800"]]
39
40
41 == 1.2 ​Features ==
42
43
44 * LoRaWAN 1.0.3 Class A
45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 * Ultra-low power consumption
47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 * Monitor Battery Level
51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
53 * AT Commands to change parameters
54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57 == 1.3 Specification ==
58
59
60 (% style="color:#037691" %)**Common DC Characteristics:**
61
62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 * Operating Temperature: -40 ~~ 85°C
64
65 (% style="color:#037691" %)**Probe Specification:**
66
67 * Storage temperature:-20℃~~75℃
68 * Operating temperature : -20℃~~60℃
69 * Measure Distance:
70 ** 0.1m ~~ 12m @ 90% Reflectivity
71 ** 0.1m ~~ 4m @ 10% Reflectivity
72 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Distance resolution : 5mm
74 * Ambient light immunity : 70klux
75 * Enclosure rating : IP65
76 * Light source : LED
77 * Central wavelength : 850nm
78 * FOV : 3.6°
79 * Material of enclosure : ABS+PC
80 * Wire length : 25cm
81
82 (% style="color:#037691" %)**LoRa Spec:**
83
84 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 * Max +22 dBm constant RF output vs.
86 * RX sensitivity: down to -139 dBm.
87 * Excellent blocking immunity
88
89 (% style="color:#037691" %)**Battery:**
90
91 * Li/SOCI2 un-chargeable battery
92 * Capacity: 8500mAh
93 * Self-Discharge: <1% / Year @ 25°C
94 * Max continuously current: 130mA
95 * Max boost current: 2A, 1 second
96
97 (% style="color:#037691" %)**Power Consumption**
98
99 * Sleep Mode: 5uA @ 3.3v
100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101
102
103 == 1.4 Applications ==
104
105
106 * Horizontal distance measurement
107 * Parking management system
108 * Object proximity and presence detection
109 * Intelligent trash can management system
110 * Robot obstacle avoidance
111 * Automatic control
112 * Sewer
113
114
115 (% style="display:none" %)
116
117 == 1.5 Sleep mode and working mode ==
118
119
120 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
121
122 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
123
124
125 == 1.6 Button & LEDs ==
126
127
128 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
129
130
131 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
132 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
133 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
134 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
135 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
136 )))
137 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
138 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
139 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
140 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
141 )))
142 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
143
144 == 1.7 BLE connection ==
145
146
147 LDS12-LB support BLE remote configure.
148
149 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
150
151 * Press button to send an uplink
152 * Press button to active device.
153 * Device Power on or reset.
154
155 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
156
157
158 == 1.8 Pin Definitions ==
159
160 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
161
162
163
164 == 1.9 Mechanical ==
165
166
167 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
168
169
170 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
171
172
173 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
174
175
176 (% style="color:blue" %)**Probe Mechanical:**
177
178
179
180 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
181
182
183 = 2. Configure LDS12-LB to connect to LoRaWAN network =
184
185 == 2.1 How it works ==
186
187
188 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
189
190 (% style="display:none" %) (%%)
191
192 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
197 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199 [[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
200
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
203
204 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
205
206 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
207
208
209 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
210
211
212 (% style="color:blue" %)**Register the device**
213
214 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
215
216
217 (% style="color:blue" %)**Add APP EUI and DEV EUI**
218
219 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
220
221
222 (% style="color:blue" %)**Add APP EUI in the application**
223
224
225 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
226
227
228 (% style="color:blue" %)**Add APP KEY**
229
230 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
231
232
233 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
234
235
236 Press the button for 5 seconds to activate the LDS12-LB.
237
238 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
239
240 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
241
242
243 == 2.3 ​Uplink Payload ==
244
245
246 (((
247 LDS12-LB will uplink payload via LoRaWAN with below payload format: 
248 )))
249
250 (((
251 Uplink payload includes in total 11 bytes.
252 )))
253
254
255 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
256 |=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
257 **Size(bytes)**
258 )))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
259 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
260 [[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
261 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
262 [[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
263 )))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
264 [[Message Type>>||anchor="H2.3.7MessageType"]]
265 )))
266
267 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
268
269
270 === 2.3.1 Battery Info ===
271
272
273 Check the battery voltage for LDS12-LB.
274
275 Ex1: 0x0B45 = 2885mV
276
277 Ex2: 0x0B49 = 2889mV
278
279
280 === 2.3.2 DS18B20 Temperature sensor ===
281
282
283 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
284
285
286 **Example**:
287
288 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
289
290 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
291
292
293 === 2.3.3 Distance ===
294
295
296 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
297
298
299 **Example**:
300
301 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
302
303
304 === 2.3.4 Distance signal strength ===
305
306
307 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
308
309
310 **Example**:
311
312 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
313
314 Customers can judge whether they need to adjust the environment based on the signal strength.
315
316
317 === 2.3.5 Interrupt Pin ===
318
319
320 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
321
322 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
323
324 **Example:**
325
326 0x00: Normal uplink packet.
327
328 0x01: Interrupt Uplink Packet.
329
330
331 === 2.3.6 LiDAR temp ===
332
333
334 Characterize the internal temperature value of the sensor.
335
336 **Example: **
337 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
338 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
339
340
341 === 2.3.7 Message Type ===
342
343
344 (((
345 For a normal uplink payload, the message type is always 0x01.
346 )))
347
348 (((
349 Valid Message Type:
350 )))
351
352 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
353 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
354 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
355 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
356
357
358
359
360 === 2.3.8 Decode payload in The Things Network ===
361
362
363 While using TTN network, you can add the payload format to decode the payload.
364
365
366 [[image:1654592762713-715.png]]
367
368
369 (((
370 The payload decoder function for TTN is here:
371 )))
372
373 (((
374 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
375 )))
376
377
378 == 2.4 Uplink Interval ==
379
380
381 The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
382
383
384 == 2.5 ​Show Data in DataCake IoT Server ==
385
386
387 (((
388 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
389 )))
390
391
392 (((
393 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
394 )))
395
396 (((
397 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
398 )))
399
400
401 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
402
403
404 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
405
406
407 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
408
409 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
410
411 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
412
413
414 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
415
416 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
417
418
419 == 2.6 Datalog Feature ==
420
421
422 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
423
424
425 === 2.6.1 Ways to get datalog via LoRaWAN ===
426
427
428 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
429
430 * (((
431 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
432 )))
433 * (((
434 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
435 )))
436
437 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
438
439 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
440
441
442 === 2.6.2 Unix TimeStamp ===
443
444
445 LDS12-LB uses Unix TimeStamp format based on
446
447 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
448
449 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
450
451 Below is the converter example
452
453 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
454
455
456 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
457
458
459 === 2.6.3 Set Device Time ===
460
461
462 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
463
464 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
465
466 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
467
468
469 === 2.6.4 Poll sensor value ===
470
471
472 Users can poll sensor values based on timestamps. Below is the downlink command.
473
474 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
475 |(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
476 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
477 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
478
479 (((
480 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
481 )))
482
483 (((
484 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
485 )))
486
487 (((
488 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
489 )))
490
491 (((
492 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
493 )))
494
495
496 == 2.7 Frequency Plans ==
497
498
499 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
500
501 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
502
503
504 == 2.8 LiDAR ToF Measurement ==
505
506 === 2.8.1 Principle of Distance Measurement ===
507
508
509 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
510
511
512 [[image:1654831757579-263.png]]
513
514
515 === 2.8.2 Distance Measurement Characteristics ===
516
517
518 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
519
520 [[image:1654831774373-275.png]]
521
522
523 (((
524 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
525 )))
526
527 (((
528 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
529 )))
530
531 (((
532 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
533 )))
534
535
536 (((
537 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
538 )))
539
540
541 [[image:1654831797521-720.png]]
542
543
544 (((
545 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
546 )))
547
548 [[image:1654831810009-716.png]]
549
550
551 (((
552 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
553 )))
554
555
556 === 2.8.3 Notice of usage: ===
557
558
559 Possible invalid /wrong reading for LiDAR ToF tech:
560
561 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
562 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
563 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
564 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
565
566 === 2.8.4  Reflectivity of different objects ===
567
568
569 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
570 |=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
571 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
572 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
573 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
574 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
575 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
576 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
577 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
578 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
579 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
580 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
581 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
582 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
583 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
584 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
585 |(% style="width:53px" %)15|(% style="width:229px" %)(((
586 Unpolished white metal surface
587 )))|(% style="width:93px" %)130%
588 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
589 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
590 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
591
592 = 3. Configure LDS12-LB =
593
594 == 3.1 Configure Methods ==
595
596
597 LDS12-LB supports below configure method:
598
599 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
600
601 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
602
603 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
604
605 == 3.2 General Commands ==
606
607
608 These commands are to configure:
609
610 * General system settings like: uplink interval.
611
612 * LoRaWAN protocol & radio related command.
613
614 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
615
616 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
617
618
619 == 3.3 Commands special design for LDS12-LB ==
620
621
622 These commands only valid for LDS12-LB, as below:
623
624
625 === 3.3.1 Set Transmit Interval Time ===
626
627
628 (((
629 Feature: Change LoRaWAN End Node Transmit Interval.
630 )))
631
632 (((
633 (% style="color:blue" %)**AT Command: AT+TDC**
634 )))
635
636 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
637 |=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
638 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
639 30000
640 OK
641 the interval is 30000ms = 30s
642 )))
643 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
644 OK
645 Set transmit interval to 60000ms = 60 seconds
646 )))
647
648 (((
649 (% style="color:blue" %)**Downlink Command: 0x01**
650 )))
651
652 (((
653 Format: Command Code (0x01) followed by 3 bytes time value.
654 )))
655
656 (((
657 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
658 )))
659
660 * (((
661 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
662 )))
663 * (((
664 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
665 )))
666
667 === 3.3.2 Set Interrupt Mode ===
668
669
670 Feature, Set Interrupt mode for PA8 of pin.
671
672 When AT+INTMOD=0 is set, PA8 is used as a digital input port.
673
674 (% style="color:blue" %)**AT Command: AT+INTMOD**
675
676 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
677 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
678 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
679 0
680 OK
681 the mode is 0 =Disable Interrupt
682 )))
683 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
684 Set Transmit Interval
685 0. (Disable Interrupt),
686 ~1. (Trigger by rising and falling edge)
687 2. (Trigger by falling edge)
688 3. (Trigger by rising edge)
689 )))|(% style="width:157px" %)OK
690
691 (% style="color:blue" %)**Downlink Command: 0x06**
692
693 Format: Command Code (0x06) followed by 3 bytes.
694
695 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
696
697 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
698
699 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
700
701
702
703 === 3.3.3 Get Firmware Version Info ===
704
705
706 Feature: use downlink to get firmware version.
707
708 (% style="color:#037691" %)**Downlink Command: 0x26**
709
710 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
711 |(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)**
712 |(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
713
714 * Reply to the confirmation package: 26 01
715 * Reply to non-confirmed packet: 26 00
716
717 Device will send an uplink after got this downlink command. With below payload:
718
719 Configures info payload:
720
721 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
722 |=(% style="background-color:#D9E2F3;color:#0070C0" %)(((
723 **Size(bytes)**
724 )))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
725 |**Value**|Software Type|(((
726 Frequency
727 Band
728 )))|Sub-band|(((
729 Firmware
730 Version
731 )))|Sensor Type|Reserve|(((
732 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
733 Always 0x02
734 )))
735
736 (% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
737
738 (% style="color:#037691" %)**Frequency Band**:
739
740 *0x01: EU868
741
742 *0x02: US915
743
744 *0x03: IN865
745
746 *0x04: AU915
747
748 *0x05: KZ865
749
750 *0x06: RU864
751
752 *0x07: AS923
753
754 *0x08: AS923-1
755
756 *0x09: AS923-2
757
758 *0xa0: AS923-3
759
760
761 (% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
762
763 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
764
765 (% style="color:#037691" %)**Sensor Type**:
766
767 0x01: LSE01
768
769 0x02: LDDS75
770
771 0x03: LDDS20
772
773 0x04: LLMS01
774
775 0x05: LSPH01
776
777 0x06: LSNPK01
778
779 0x07: LLDS12
780
781
782 = 4. Battery & Power Consumption =
783
784
785 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
786
787 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
788
789
790 = 5. OTA Firmware update =
791
792
793 (% class="wikigeneratedid" %)
794 User can change firmware LDS12-LB to:
795
796 * Change Frequency band/ region.
797
798 * Update with new features.
799
800 * Fix bugs.
801
802 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
803
804 Methods to Update Firmware:
805
806 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
807
808 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
809
810 = 6. FAQ =
811
812 == 6.1 What is the frequency plan for LDS12-LB? ==
813
814
815 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
816
817
818 = 7. Trouble Shooting =
819
820 == 7.1 AT Command input doesn't work ==
821
822
823 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
824
825
826 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
827
828
829 (((
830 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
831 )))
832
833 (((
834 Troubleshooting: Please avoid use of this product under such circumstance in practice.
835 )))
836
837
838 (((
839 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
840 )))
841
842 (((
843 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
844 )))
845
846
847 = 8. Order Info =
848
849
850 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
851
852 (% style="color:red" %)**XXX**(%%): **The default frequency band**
853
854 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
855
856 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
857
858 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
859
860 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
861
862 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
863
864 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
865
866 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
867
868 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
869
870 = 9. ​Packing Info =
871
872
873 (% style="color:#037691" %)**Package Includes**:
874
875 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
876
877 (% style="color:#037691" %)**Dimension and weight**:
878
879 * Device Size: cm
880
881 * Device Weight: g
882
883 * Package Size / pcs : cm
884
885 * Weight / pcs : g
886
887 = 10. Support =
888
889
890 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
891
892 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].