Version 82.8 by Xiaoling on 2023/06/14 16:58

Hide last authors
Ellie Zhang 26.1 1 (% style="text-align:center" %)
Xiaoling 80.2 2 [[image:image-20230614153353-1.png]]
Edwin Chen 1.1 3
4
Xiaoling 67.2 5
Xiaoling 75.2 6
7
8
9
kai 31.2 10 **Table of Contents:**
Ellie Zhang 30.1 11
Edwin Chen 1.1 12 {{toc/}}
13
14
15
16
17
18
kai 31.1 19 = 1. Introduction =
Edwin Chen 1.1 20
Xiaoling 80.2 21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
Edwin Chen 1.1 22
Xiaoling 39.6 23
Xiaoling 80.3 24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
Edwin Chen 1.1 25
Xiaoling 80.3 26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
Edwin Chen 1.1 27
Xiaoling 80.2 28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
Edwin Chen 1.1 29
Xiaoling 80.3 30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
Xiaoling 62.4 31
Xiaoling 80.3 32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
Edwin Chen 1.1 33
Xiaoling 80.3 34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
Edwin Chen 1.1 35
Xiaoling 80.3 36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
Xiaoling 75.3 37
Xiaoling 82.2 38 [[image:image-20230614162334-2.png||height="468" width="800"]]
Edwin Chen 1.1 39
Xiaoling 64.2 40
Edwin Chen 1.1 41 == 1.2 ​Features ==
42
Xiaoling 39.6 43
Edwin Chen 1.1 44 * LoRaWAN 1.0.3 Class A
Xiaoling 62.4 45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
Edwin Chen 1.1 46 * Ultra-low power consumption
Xiaoling 82.2 47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 * Monitor Battery Level
Edwin Chen 1.1 51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
Xiaoling 70.5 53 * AT Commands to change parameters
Edwin Chen 1.1 54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57 == 1.3 Specification ==
58
59
Xiaoling 70.28 60 (% style="color:#037691" %)**Common DC Characteristics:**
Xiaoling 70.6 61
Xiaoling 70.28 62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 * Operating Temperature: -40 ~~ 85°C
64
Xiaoling 82.3 65 (% style="color:#037691" %)**Probe Specification:**
66
67 * Storage temperature:-20℃~~75℃
68 * Operating temperature : -20℃~~60℃
69 * Measure Distance:
70 ** 0.1m ~~ 12m @ 90% Reflectivity
71 ** 0.1m ~~ 4m @ 10% Reflectivity
72 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Distance resolution : 5mm
74 * Ambient light immunity : 70klux
75 * Enclosure rating : IP65
76 * Light source : LED
77 * Central wavelength : 850nm
78 * FOV : 3.6°
79 * Material of enclosure : ABS+PC
80 * Wire length : 25cm
81
Xiaoling 70.28 82 (% style="color:#037691" %)**LoRa Spec:**
83
84 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 * Max +22 dBm constant RF output vs.
86 * RX sensitivity: down to -139 dBm.
87 * Excellent blocking immunity
88
89 (% style="color:#037691" %)**Battery:**
90
91 * Li/SOCI2 un-chargeable battery
92 * Capacity: 8500mAh
93 * Self-Discharge: <1% / Year @ 25°C
94 * Max continuously current: 130mA
95 * Max boost current: 2A, 1 second
96
97 (% style="color:#037691" %)**Power Consumption**
98
99 * Sleep Mode: 5uA @ 3.3v
100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101
102
Xiaoling 82.4 103 == 1.4 Applications ==
Xiaoling 70.6 104
Xiaoling 79.15 105
Xiaoling 82.4 106 * Horizontal distance measurement
107 * Parking management system
108 * Object proximity and presence detection
109 * Intelligent trash can management system
110 * Robot obstacle avoidance
111 * Automatic control
112 * Sewer
Xiaoling 77.4 113
114
Xiaoling 79.18 115 (% style="display:none" %)
116
Xiaoling 82.4 117 == 1.5 Sleep mode and working mode ==
Xiaoling 77.4 118
119
Edwin Chen 1.1 120 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
121
122 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
123
124
Xiaoling 82.4 125 == 1.6 Button & LEDs ==
Edwin Chen 1.1 126
127
Edwin Chen 6.1 128 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
Edwin Chen 1.1 129
130
Xiaoling 14.13 131 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 14.11 132 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
Edwin Chen 1.1 133 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
134 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
135 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
136 )))
137 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
138 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
139 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
140 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
141 )))
Edwin Chen 6.1 142 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
Edwin Chen 1.1 143
Xiaoling 82.4 144 == 1.7 BLE connection ==
Edwin Chen 1.1 145
146
Xiaoling 80.4 147 LDS12-LB support BLE remote configure.
Edwin Chen 1.1 148
149 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
150
151 * Press button to send an uplink
152 * Press button to active device.
153 * Device Power on or reset.
154
155 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
156
157
Xiaoling 82.4 158 == 1.8 Pin Definitions ==
Edwin Chen 1.1 159
Xiaoling 82.4 160 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
Edwin Chen 1.1 161
Saxer Lin 43.1 162
Xiaoling 67.4 163
Xiaoling 82.4 164 == 1.9 Mechanical ==
Xiaoling 67.4 165
Xiaoling 82.4 166
Edwin Chen 6.1 167 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
Edwin Chen 1.1 168
169
Edwin Chen 6.1 170 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
Edwin Chen 1.1 171
172
Edwin Chen 6.1 173 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
Edwin Chen 1.1 174
175
Xiaoling 70.20 176 (% style="color:blue" %)**Probe Mechanical:**
Xiaoling 70.10 177
178
179
Xiaoling 82.3 180 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
Xiaoling 79.2 181
182
Xiaoling 80.4 183 = 2. Configure LDS12-LB to connect to LoRaWAN network =
Xiaoling 67.4 184
Edwin Chen 1.1 185 == 2.1 How it works ==
186
187
Xiaoling 80.4 188 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 1.1 189
Xiaoling 64.2 190 (% style="display:none" %) (%%)
Edwin Chen 1.1 191
192 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
Xiaoling 62.5 197 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 1.1 198
Xiaoling 82.2 199 [[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
Edwin Chen 1.1 200
Xiaoling 64.2 201
Xiaoling 80.4 202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
Edwin Chen 1.1 203
Xiaoling 80.4 204 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 1.1 205
Ellie Zhang 30.1 206 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 1.1 207
208
209 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
210
211
212 (% style="color:blue" %)**Register the device**
213
Xiaoling 14.13 214 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
Edwin Chen 1.1 215
216
217 (% style="color:blue" %)**Add APP EUI and DEV EUI**
218
Ellie Zhang 30.1 219 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
Edwin Chen 1.1 220
221
222 (% style="color:blue" %)**Add APP EUI in the application**
223
224
Ellie Zhang 30.1 225 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
Edwin Chen 1.1 226
227
228 (% style="color:blue" %)**Add APP KEY**
229
Ellie Zhang 30.1 230 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
Edwin Chen 1.1 231
232
Xiaoling 80.4 233 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
Edwin Chen 1.1 234
235
Xiaoling 80.4 236 Press the button for 5 seconds to activate the LDS12-LB.
Edwin Chen 6.1 237
Edwin Chen 1.1 238 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
239
240 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
241
242
Xiaoling 82.8 243 == 2.3 ​Uplink Payload ==
Edwin Chen 1.1 244
245
Xiaoling 62.5 246 (((
Xiaoling 80.4 247 LDS12-LB will uplink payload via LoRaWAN with below payload format: 
Xiaoling 62.5 248 )))
Edwin Chen 1.1 249
Xiaoling 62.5 250 (((
Xiaoling 82.4 251 Uplink payload includes in total 11 bytes.
Xiaoling 62.5 252 )))
Edwin Chen 1.1 253
Xiaoling 82.4 254
Xiaoling 82.6 255 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
256 |=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
Xiaoling 70.10 257 **Size(bytes)**
Xiaoling 82.6 258 )))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
Xiaoling 82.8 259 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
260 [[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
261 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
262 [[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
263 )))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
264 [[Message Type>>||anchor="H2.3.7MessageType"]]
Xiaoling 82.4 265 )))
Edwin Chen 1.1 266
Xiaoling 82.6 267 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
Edwin Chen 1.1 268
269
Xiaoling 82.8 270 === 2.3.1 Battery Info ===
Edwin Chen 1.1 271
272
Xiaoling 80.4 273 Check the battery voltage for LDS12-LB.
Edwin Chen 1.1 274
Xiaoling 70.10 275 Ex1: 0x0B45 = 2885mV
Edwin Chen 1.1 276
Xiaoling 70.10 277 Ex2: 0x0B49 = 2889mV
Saxer Lin 46.1 278
Edwin Chen 1.1 279
Xiaoling 82.8 280 === 2.3.2 DS18B20 Temperature sensor ===
Xiaoling 67.7 281
282
Xiaoling 82.4 283 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
Edwin Chen 1.1 284
Xiaoling 14.22 285
Xiaoling 82.4 286 **Example**:
Edwin Chen 1.1 287
Xiaoling 82.4 288 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
Xiaoling 79.11 289
Xiaoling 82.4 290 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
Xiaoling 67.7 291
292
Xiaoling 82.8 293 === 2.3.3 Distance ===
Edwin Chen 10.1 294
Edwin Chen 1.1 295
Xiaoling 82.4 296 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
297
298
299 **Example**:
300
301 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
302
303
Xiaoling 82.8 304 === 2.3.4 Distance signal strength ===
Xiaoling 82.4 305
306
307 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
308
309
310 **Example**:
311
312 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
313
314 Customers can judge whether they need to adjust the environment based on the signal strength.
315
316
Xiaoling 82.8 317 === 2.3.5 Interrupt Pin ===
Xiaoling 82.4 318
319
320 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
321
322 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
323
Xiaoling 70.10 324 **Example:**
Edwin Chen 1.1 325
Xiaoling 70.10 326 0x00: Normal uplink packet.
Edwin Chen 1.1 327
Xiaoling 70.10 328 0x01: Interrupt Uplink Packet.
Edwin Chen 1.1 329
330
Xiaoling 82.8 331 === 2.3.6 LiDAR temp ===
Xiaoling 62.5 332
Edwin Chen 1.1 333
Xiaoling 82.4 334 Characterize the internal temperature value of the sensor.
Edwin Chen 1.1 335
Xiaoling 82.4 336 **Example: **
337 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
338 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
Edwin Chen 1.1 339
Xiaoling 39.5 340
Xiaoling 82.8 341 === 2.3.7 Message Type ===
Edwin Chen 1.1 342
343
Saxer Lin 55.1 344 (((
Xiaoling 82.4 345 For a normal uplink payload, the message type is always 0x01.
Saxer Lin 55.1 346 )))
347
348 (((
Xiaoling 82.4 349 Valid Message Type:
Saxer Lin 55.1 350 )))
Saxer Lin 46.1 351
Xiaoling 82.4 352 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
Xiaoling 82.7 353 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
Xiaoling 82.4 354 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
355 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
Saxer Lin 46.1 356
Saxer Lin 55.1 357
Xiaoling 82.4 358
Xiaoling 82.8 359
360 === 2.3.8 Decode payload in The Things Network ===
361
362
Xiaoling 70.10 363 While using TTN network, you can add the payload format to decode the payload.
Edwin Chen 1.1 364
365
Xiaoling 82.4 366 [[image:1654592762713-715.png]]
Edwin Chen 1.1 367
Xiaoling 82.4 368
Xiaoling 62.5 369 (((
Xiaoling 82.4 370 The payload decoder function for TTN is here:
Xiaoling 62.5 371 )))
Edwin Chen 1.1 372
Xiaoling 82.4 373 (((
374 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
375 )))
Edwin Chen 1.1 376
Xiaoling 82.4 377
Xiaoling 82.8 378 == 2.4 Uplink Interval ==
Edwin Chen 1.1 379
380
Xiaoling 80.4 381 The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
Edwin Chen 1.1 382
Xiaoling 70.10 383
Xiaoling 82.8 384 == 2.5 ​Show Data in DataCake IoT Server ==
Xiaoling 70.10 385
386
Xiaoling 62.5 387 (((
Xiaoling 70.10 388 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
Xiaoling 62.5 389 )))
Edwin Chen 1.1 390
391
Xiaoling 62.5 392 (((
Xiaoling 70.10 393 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
Xiaoling 62.5 394 )))
Edwin Chen 1.1 395
Xiaoling 62.5 396 (((
Xiaoling 70.10 397 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
Xiaoling 62.5 398 )))
Xiaoling 14.26 399
Saxer Lin 55.1 400
Xiaoling 70.10 401 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
Edwin Chen 1.1 402
403
Xiaoling 70.10 404 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
Edwin Chen 1.1 405
406
Xiaoling 70.10 407 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
Edwin Chen 1.1 408
Xiaoling 80.4 409 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
Edwin Chen 1.1 410
Xiaoling 70.10 411 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
Xiaoling 62.5 412
Edwin Chen 1.1 413
Xiaoling 70.10 414 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
Edwin Chen 1.1 415
Xiaoling 70.10 416 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
Edwin Chen 1.1 417
418
Xiaoling 70.10 419 == 2.6 Datalog Feature ==
Edwin Chen 1.1 420
421
Xiaoling 80.4 422 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
Xiaoling 62.5 423
424
Xiaoling 70.10 425 === 2.6.1 Ways to get datalog via LoRaWAN ===
Xiaoling 62.5 426
427
Xiaoling 80.4 428 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
Xiaoling 62.5 429
430 * (((
Xiaoling 80.4 431 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
Xiaoling 62.5 432 )))
433 * (((
Xiaoling 80.4 434 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
Xiaoling 62.5 435 )))
436
437 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
438
439 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
440
441
Xiaoling 70.10 442 === 2.6.2 Unix TimeStamp ===
Xiaoling 62.5 443
444
Xiaoling 80.4 445 LDS12-LB uses Unix TimeStamp format based on
Xiaoling 62.5 446
447 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
448
449 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
450
451 Below is the converter example
452
453 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
454
455
456 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
457
458
Xiaoling 70.10 459 === 2.6.3 Set Device Time ===
Xiaoling 62.5 460
461
462 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
463
Xiaoling 80.4 464 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
Xiaoling 62.5 465
466 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
467
468
Xiaoling 70.10 469 === 2.6.4 Poll sensor value ===
Xiaoling 62.5 470
471
472 Users can poll sensor values based on timestamps. Below is the downlink command.
473
474 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
475 |(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
476 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
477 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
478
479 (((
480 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
481 )))
482
483 (((
Xiaoling 64.8 484 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
Xiaoling 62.5 485 )))
486
487 (((
488 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
489 )))
490
491 (((
Xiaoling 80.4 492 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
Xiaoling 62.5 493 )))
494
495
Xiaoling 70.10 496 == 2.7 Frequency Plans ==
Edwin Chen 1.1 497
498
Xiaoling 80.4 499 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 1.1 500
501 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
502
503
Xiaoling 82.4 504 == 2.8 LiDAR ToF Measurement ==
505
506 === 2.8.1 Principle of Distance Measurement ===
507
508
509 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
510
511
512 [[image:1654831757579-263.png]]
513
514
515 === 2.8.2 Distance Measurement Characteristics ===
516
517
518 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
519
520 [[image:1654831774373-275.png]]
521
522
523 (((
524 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
525 )))
526
527 (((
528 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
529 )))
530
531 (((
532 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
533 )))
534
535
536 (((
537 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
538 )))
539
540
541 [[image:1654831797521-720.png]]
542
543
544 (((
545 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
546 )))
547
548 [[image:1654831810009-716.png]]
549
550
551 (((
552 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
553 )))
554
555
556 === 2.8.3 Notice of usage: ===
557
558
559 Possible invalid /wrong reading for LiDAR ToF tech:
560
561 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
562 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
563 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
564 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
565
566 === 2.8.4  Reflectivity of different objects ===
567
568
569 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
570 |=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
571 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
572 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
573 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
574 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
575 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
576 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
577 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
578 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
579 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
580 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
581 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
582 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
583 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
584 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
585 |(% style="width:53px" %)15|(% style="width:229px" %)(((
586 Unpolished white metal surface
587 )))|(% style="width:93px" %)130%
588 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
589 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
590 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
591
Xiaoling 80.4 592 = 3. Configure LDS12-LB =
Edwin Chen 1.1 593
kai 16.4 594 == 3.1 Configure Methods ==
Edwin Chen 1.1 595
596
Xiaoling 80.4 597 LDS12-LB supports below configure method:
Edwin Chen 1.1 598
599 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
Xiaoling 67.20 600
Edwin Chen 11.1 601 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
Xiaoling 67.20 602
Edwin Chen 1.1 603 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
604
605 == 3.2 General Commands ==
606
607
608 These commands are to configure:
609
610 * General system settings like: uplink interval.
Xiaoling 67.20 611
Edwin Chen 1.1 612 * LoRaWAN protocol & radio related command.
613
614 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
615
616 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
617
618
Xiaoling 80.4 619 == 3.3 Commands special design for LDS12-LB ==
Edwin Chen 1.1 620
621
Xiaoling 80.4 622 These commands only valid for LDS12-LB, as below:
Edwin Chen 1.1 623
624
625 === 3.3.1 Set Transmit Interval Time ===
626
627
Xiaoling 62.5 628 (((
Edwin Chen 1.1 629 Feature: Change LoRaWAN End Node Transmit Interval.
Xiaoling 62.5 630 )))
631
632 (((
Edwin Chen 1.1 633 (% style="color:blue" %)**AT Command: AT+TDC**
Xiaoling 62.5 634 )))
Edwin Chen 1.1 635
Xiaoling 14.34 636 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 62.5 637 |=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
Edwin Chen 1.1 638 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
639 30000
640 OK
641 the interval is 30000ms = 30s
642 )))
643 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
644 OK
645 Set transmit interval to 60000ms = 60 seconds
646 )))
647
Xiaoling 62.5 648 (((
Edwin Chen 1.1 649 (% style="color:blue" %)**Downlink Command: 0x01**
Xiaoling 62.5 650 )))
Edwin Chen 1.1 651
Xiaoling 62.5 652 (((
Edwin Chen 1.1 653 Format: Command Code (0x01) followed by 3 bytes time value.
Xiaoling 62.5 654 )))
Edwin Chen 1.1 655
Xiaoling 62.5 656 (((
Edwin Chen 1.1 657 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
Xiaoling 62.5 658 )))
Edwin Chen 1.1 659
Xiaoling 62.5 660 * (((
661 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
662 )))
663 * (((
Xiaoling 73.8 664 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
Xiaoling 82.5 665 )))
Xiaoling 79.19 666
Xiaoling 70.11 667 === 3.3.2 Set Interrupt Mode ===
Xiaoling 62.5 668
669
Saxer Lin 43.1 670 Feature, Set Interrupt mode for PA8 of pin.
Edwin Chen 1.1 671
Saxer Lin 46.1 672 When AT+INTMOD=0 is set, PA8 is used as a digital input port.
673
Edwin Chen 1.1 674 (% style="color:blue" %)**AT Command: AT+INTMOD**
675
Xiaoling 14.34 676 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 62.5 677 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Edwin Chen 1.1 678 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
679 0
680 OK
681 the mode is 0 =Disable Interrupt
682 )))
683 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
684 Set Transmit Interval
685 0. (Disable Interrupt),
686 ~1. (Trigger by rising and falling edge)
687 2. (Trigger by falling edge)
688 3. (Trigger by rising edge)
689 )))|(% style="width:157px" %)OK
690
691 (% style="color:blue" %)**Downlink Command: 0x06**
692
693 Format: Command Code (0x06) followed by 3 bytes.
694
695 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
696
697 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
Xiaoling 62.6 698
Edwin Chen 1.1 699 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
700
Xiaoling 82.5 701
702
703 === 3.3.3 Get Firmware Version Info ===
704
705
706 Feature: use downlink to get firmware version.
707
708 (% style="color:#037691" %)**Downlink Command: 0x26**
709
710 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
711 |(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)**
712 |(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
713
714 * Reply to the confirmation package: 26 01
715 * Reply to non-confirmed packet: 26 00
716
717 Device will send an uplink after got this downlink command. With below payload:
718
719 Configures info payload:
720
721 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
722 |=(% style="background-color:#D9E2F3;color:#0070C0" %)(((
723 **Size(bytes)**
724 )))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
725 |**Value**|Software Type|(((
726 Frequency
727 Band
728 )))|Sub-band|(((
729 Firmware
730 Version
731 )))|Sensor Type|Reserve|(((
732 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
733 Always 0x02
734 )))
735
736 (% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
737
738 (% style="color:#037691" %)**Frequency Band**:
739
740 *0x01: EU868
741
742 *0x02: US915
743
744 *0x03: IN865
745
746 *0x04: AU915
747
748 *0x05: KZ865
749
750 *0x06: RU864
751
752 *0x07: AS923
753
754 *0x08: AS923-1
755
756 *0x09: AS923-2
757
758 *0xa0: AS923-3
759
760
761 (% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
762
763 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
764
765 (% style="color:#037691" %)**Sensor Type**:
766
767 0x01: LSE01
768
769 0x02: LDDS75
770
771 0x03: LDDS20
772
773 0x04: LLMS01
774
775 0x05: LSPH01
776
777 0x06: LSNPK01
778
779 0x07: LLDS12
780
781
kai 16.4 782 = 4. Battery & Power Consumption =
Xiaoling 14.45 783
Edwin Chen 1.1 784
Xiaoling 80.4 785 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 1.1 786
787 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
788
789
kai 16.4 790 = 5. OTA Firmware update =
Edwin Chen 1.1 791
792
Edwin Chen 13.1 793 (% class="wikigeneratedid" %)
Xiaoling 80.4 794 User can change firmware LDS12-LB to:
Edwin Chen 1.1 795
Edwin Chen 13.1 796 * Change Frequency band/ region.
Xiaoling 62.7 797
Edwin Chen 13.1 798 * Update with new features.
Xiaoling 62.7 799
Edwin Chen 13.1 800 * Fix bugs.
Edwin Chen 1.1 801
Xiaoling 79.6 802 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
Edwin Chen 1.1 803
kai 31.1 804 Methods to Update Firmware:
Edwin Chen 1.1 805
Xiaoling 79.15 806 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
Xiaoling 62.7 807
Xiaoling 70.18 808 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 1.1 809
kai 31.1 810 = 6. FAQ =
Edwin Chen 1.1 811
Xiaoling 80.4 812 == 6.1 What is the frequency plan for LDS12-LB? ==
Edwin Chen 1.1 813
Xiaoling 62.7 814
Xiaoling 80.4 815 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
Xiaoling 62.7 816
Edwin Chen 1.1 817
Xiaoling 80.4 818 = 7. Trouble Shooting =
Edwin Chen 1.1 819
Xiaoling 80.4 820 == 7.1 AT Command input doesn't work ==
Edwin Chen 1.1 821
Xiaoling 70.14 822
Xiaoling 80.4 823 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
Xiaoling 70.14 824
825
Xiaoling 80.4 826 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
Xiaoling 70.14 827
828
Xiaoling 80.4 829 (((
830 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
831 )))
Xiaoling 70.14 832
Xiaoling 80.4 833 (((
834 Troubleshooting: Please avoid use of this product under such circumstance in practice.
835 )))
Xiaoling 70.14 836
837
Xiaoling 80.4 838 (((
839 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
840 )))
Xiaoling 70.14 841
Xiaoling 79.7 842 (((
Xiaoling 80.4 843 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
Xiaoling 79.7 844 )))
Xiaoling 70.14 845
846
847 = 8. Order Info =
848
849
Xiaoling 80.4 850 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
Xiaoling 70.14 851
Xiaoling 70.12 852 (% style="color:red" %)**XXX**(%%): **The default frequency band**
Edwin Chen 1.1 853
Ellie Zhang 38.1 854 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
Edwin Chen 1.1 855
Ellie Zhang 38.1 856 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
Edwin Chen 1.1 857
Ellie Zhang 38.1 858 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
Edwin Chen 1.1 859
Ellie Zhang 38.1 860 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
Edwin Chen 1.1 861
Ellie Zhang 38.1 862 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
Edwin Chen 1.1 863
Ellie Zhang 38.1 864 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
Edwin Chen 1.1 865
Ellie Zhang 38.1 866 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
Edwin Chen 1.1 867
Ellie Zhang 38.1 868 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
Edwin Chen 1.1 869
Xiaoling 70.14 870 = 9. ​Packing Info =
Xiaoling 67.11 871
872
Ellie Zhang 39.1 873 (% style="color:#037691" %)**Package Includes**:
Edwin Chen 1.1 874
Xiaoling 80.4 875 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
Edwin Chen 1.1 876
Ellie Zhang 39.1 877 (% style="color:#037691" %)**Dimension and weight**:
Edwin Chen 1.1 878
kai 31.1 879 * Device Size: cm
Edwin Chen 1.1 880
kai 31.1 881 * Device Weight: g
Edwin Chen 1.1 882
kai 31.1 883 * Package Size / pcs : cm
Edwin Chen 1.1 884
kai 31.1 885 * Weight / pcs : g
Edwin Chen 1.1 886
Xiaoling 70.14 887 = 10. Support =
888
889
kai 31.1 890 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 39.6 891
892 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].