Version 82.4 by Xiaoling on 2023/06/14 16:46

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230614153353-1.png]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19 = 1. Introduction =
20
21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22
23
24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25
26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27
28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29
30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31
32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33
34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35
36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37
38 [[image:image-20230614162334-2.png||height="468" width="800"]]
39
40
41 == 1.2 ​Features ==
42
43
44 * LoRaWAN 1.0.3 Class A
45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 * Ultra-low power consumption
47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 * Monitor Battery Level
51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
53 * AT Commands to change parameters
54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57 == 1.3 Specification ==
58
59
60 (% style="color:#037691" %)**Common DC Characteristics:**
61
62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 * Operating Temperature: -40 ~~ 85°C
64
65 (% style="color:#037691" %)**Probe Specification:**
66
67 * Storage temperature:-20℃~~75℃
68 * Operating temperature : -20℃~~60℃
69 * Measure Distance:
70 ** 0.1m ~~ 12m @ 90% Reflectivity
71 ** 0.1m ~~ 4m @ 10% Reflectivity
72 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Distance resolution : 5mm
74 * Ambient light immunity : 70klux
75 * Enclosure rating : IP65
76 * Light source : LED
77 * Central wavelength : 850nm
78 * FOV : 3.6°
79 * Material of enclosure : ABS+PC
80 * Wire length : 25cm
81
82 (% style="color:#037691" %)**LoRa Spec:**
83
84 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 * Max +22 dBm constant RF output vs.
86 * RX sensitivity: down to -139 dBm.
87 * Excellent blocking immunity
88
89 (% style="color:#037691" %)**Battery:**
90
91 * Li/SOCI2 un-chargeable battery
92 * Capacity: 8500mAh
93 * Self-Discharge: <1% / Year @ 25°C
94 * Max continuously current: 130mA
95 * Max boost current: 2A, 1 second
96
97 (% style="color:#037691" %)**Power Consumption**
98
99 * Sleep Mode: 5uA @ 3.3v
100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101
102
103
104 == 1.4 Applications ==
105
106
107 * Horizontal distance measurement
108 * Parking management system
109 * Object proximity and presence detection
110 * Intelligent trash can management system
111 * Robot obstacle avoidance
112 * Automatic control
113 * Sewer
114
115
116
117 (% style="display:none" %)
118
119 == 1.5 Sleep mode and working mode ==
120
121
122 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
123
124 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
125
126
127 == 1.6 Button & LEDs ==
128
129
130 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
131
132
133 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
134 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
135 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
136 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
137 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
138 )))
139 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
140 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
141 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
142 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
143 )))
144 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
145
146 == 1.7 BLE connection ==
147
148
149 LDS12-LB support BLE remote configure.
150
151 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152
153 * Press button to send an uplink
154 * Press button to active device.
155 * Device Power on or reset.
156
157 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158
159
160 == 1.8 Pin Definitions ==
161
162 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
163
164
165
166 == 1.9 Mechanical ==
167
168
169 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
170
171
172 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
173
174
175 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
176
177
178 (% style="color:blue" %)**Probe Mechanical:**
179
180
181
182 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
183
184
185 = 2. Configure LDS12-LB to connect to LoRaWAN network =
186
187 == 2.1 How it works ==
188
189
190 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
191
192 (% style="display:none" %) (%%)
193
194 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
195
196
197 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
198
199 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
200
201 [[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
202
203
204 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
205
206 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
207
208 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
209
210
211 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
212
213
214 (% style="color:blue" %)**Register the device**
215
216 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
217
218
219 (% style="color:blue" %)**Add APP EUI and DEV EUI**
220
221 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
222
223
224 (% style="color:blue" %)**Add APP EUI in the application**
225
226
227 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
228
229
230 (% style="color:blue" %)**Add APP KEY**
231
232 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
233
234
235 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
236
237
238 Press the button for 5 seconds to activate the LDS12-LB.
239
240 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
241
242 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
243
244
245 == 2.3  ​Uplink Payload ==
246
247
248 (((
249 LDS12-LB will uplink payload via LoRaWAN with below payload format: 
250 )))
251
252 (((
253 Uplink payload includes in total 11 bytes.
254 )))
255
256
257 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
258 |=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)(((
259 **Size(bytes)**
260 )))|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 62.5px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|=(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
261 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
262 [[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
263 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
264 [[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
265 )))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
266 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
267 )))
268
269 [[image:1654833689380-972.png]]
270
271
272 === 2.3.1  Battery Info ===
273
274
275 Check the battery voltage for LDS12-LB.
276
277 Ex1: 0x0B45 = 2885mV
278
279 Ex2: 0x0B49 = 2889mV
280
281
282 === 2.3.2  DS18B20 Temperature sensor ===
283
284
285 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
286
287
288 **Example**:
289
290 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
291
292 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
293
294
295 === 2.3.3  Distance ===
296
297
298 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
299
300
301 **Example**:
302
303 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
304
305
306 === 2.3.4  Distance signal strength ===
307
308
309 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
310
311
312 **Example**:
313
314 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
315
316 Customers can judge whether they need to adjust the environment based on the signal strength.
317
318
319 === 2.3.5  Interrupt Pin ===
320
321
322 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
323
324 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
325
326 **Example:**
327
328 0x00: Normal uplink packet.
329
330 0x01: Interrupt Uplink Packet.
331
332
333 === 2.3.6  LiDAR temp ===
334
335
336 Characterize the internal temperature value of the sensor.
337
338 **Example: **
339 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
340 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
341
342
343 === 2.3.7  Message Type ===
344
345
346 (((
347 For a normal uplink payload, the message type is always 0x01.
348 )))
349
350 (((
351 Valid Message Type:
352 )))
353
354 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
355 |=(% style="width: 161px;background-color:#D9E2F3;color:#0070C0" %)**Message Type Code**|=(% style="width: 164px;background-color:#D9E2F3;color:#0070C0" %)**Description**|=(% style="width: 174px;background-color:#D9E2F3;color:#0070C0" %)**Payload**
356 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
357 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
358
359
360 === 2.3.8  Decode payload in The Things Network ===
361
362
363 While using TTN network, you can add the payload format to decode the payload.
364
365
366 [[image:1654592762713-715.png]]
367
368
369 (((
370 The payload decoder function for TTN is here:
371 )))
372
373 (((
374 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
375 )))
376
377
378 == 2.4  Uplink Interval ==
379
380
381 The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
382
383
384 == 2.5  ​Show Data in DataCake IoT Server ==
385
386
387 (((
388 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
389 )))
390
391
392 (((
393 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
394 )))
395
396 (((
397 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
398 )))
399
400
401 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
402
403
404 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
405
406
407 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
408
409 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
410
411 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
412
413
414 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
415
416 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
417
418
419 == 2.6 Datalog Feature ==
420
421
422 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
423
424
425 === 2.6.1 Ways to get datalog via LoRaWAN ===
426
427
428 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
429
430 * (((
431 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
432 )))
433 * (((
434 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
435 )))
436
437 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
438
439 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
440
441
442 === 2.6.2 Unix TimeStamp ===
443
444
445 LDS12-LB uses Unix TimeStamp format based on
446
447 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
448
449 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
450
451 Below is the converter example
452
453 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
454
455
456 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
457
458
459 === 2.6.3 Set Device Time ===
460
461
462 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
463
464 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
465
466 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
467
468
469 === 2.6.4 Poll sensor value ===
470
471
472 Users can poll sensor values based on timestamps. Below is the downlink command.
473
474 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
475 |(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
476 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
477 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
478
479 (((
480 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
481 )))
482
483 (((
484 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
485 )))
486
487 (((
488 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
489 )))
490
491 (((
492 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
493 )))
494
495
496 == 2.7 Frequency Plans ==
497
498
499 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
500
501 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
502
503
504 == 2.8 LiDAR ToF Measurement ==
505
506 === 2.8.1 Principle of Distance Measurement ===
507
508
509 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
510
511
512 [[image:1654831757579-263.png]]
513
514
515 === 2.8.2 Distance Measurement Characteristics ===
516
517
518 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
519
520 [[image:1654831774373-275.png]]
521
522
523 (((
524 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
525 )))
526
527 (((
528 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
529 )))
530
531 (((
532 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
533 )))
534
535
536 (((
537 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
538 )))
539
540
541 [[image:1654831797521-720.png]]
542
543
544 (((
545 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
546 )))
547
548 [[image:1654831810009-716.png]]
549
550
551 (((
552 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
553 )))
554
555
556 === 2.8.3 Notice of usage: ===
557
558
559 Possible invalid /wrong reading for LiDAR ToF tech:
560
561 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
562 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
563 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
564 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
565
566
567 === 2.8.4  Reflectivity of different objects ===
568
569
570 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
571 |=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
572 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
573 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
574 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
575 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
576 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
577 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
578 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
579 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
580 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
581 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
582 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
583 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
584 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
585 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
586 |(% style="width:53px" %)15|(% style="width:229px" %)(((
587 Unpolished white metal surface
588 )))|(% style="width:93px" %)130%
589 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
590 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
591 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
592
593
594 = 3. Configure LDS12-LB =
595
596 == 3.1 Configure Methods ==
597
598
599 LDS12-LB supports below configure method:
600
601 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
602
603 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
604
605 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
606
607 == 3.2 General Commands ==
608
609
610 These commands are to configure:
611
612 * General system settings like: uplink interval.
613
614 * LoRaWAN protocol & radio related command.
615
616 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
617
618 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
619
620
621 == 3.3 Commands special design for LDS12-LB ==
622
623
624 These commands only valid for LDS12-LB, as below:
625
626
627 === 3.3.1 Set Transmit Interval Time ===
628
629
630 (((
631 Feature: Change LoRaWAN End Node Transmit Interval.
632 )))
633
634 (((
635 (% style="color:blue" %)**AT Command: AT+TDC**
636 )))
637
638 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
639 |=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
640 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
641 30000
642 OK
643 the interval is 30000ms = 30s
644 )))
645 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
646 OK
647 Set transmit interval to 60000ms = 60 seconds
648 )))
649
650 (((
651 (% style="color:blue" %)**Downlink Command: 0x01**
652 )))
653
654 (((
655 Format: Command Code (0x01) followed by 3 bytes time value.
656 )))
657
658 (((
659 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
660 )))
661
662 * (((
663 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
664 )))
665 * (((
666 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
667
668
669
670 )))
671
672 === 3.3.2 Set Interrupt Mode ===
673
674
675 Feature, Set Interrupt mode for PA8 of pin.
676
677 When AT+INTMOD=0 is set, PA8 is used as a digital input port.
678
679 (% style="color:blue" %)**AT Command: AT+INTMOD**
680
681 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
682 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
683 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
684 0
685 OK
686 the mode is 0 =Disable Interrupt
687 )))
688 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
689 Set Transmit Interval
690 0. (Disable Interrupt),
691 ~1. (Trigger by rising and falling edge)
692 2. (Trigger by falling edge)
693 3. (Trigger by rising edge)
694 )))|(% style="width:157px" %)OK
695
696 (% style="color:blue" %)**Downlink Command: 0x06**
697
698 Format: Command Code (0x06) followed by 3 bytes.
699
700 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
701
702 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
703
704 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
705
706 = 4. Battery & Power Consumption =
707
708
709 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
710
711 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
712
713
714 = 5. OTA Firmware update =
715
716
717 (% class="wikigeneratedid" %)
718 User can change firmware LDS12-LB to:
719
720 * Change Frequency band/ region.
721
722 * Update with new features.
723
724 * Fix bugs.
725
726 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
727
728 Methods to Update Firmware:
729
730 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
731
732 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
733
734 = 6. FAQ =
735
736 == 6.1 What is the frequency plan for LDS12-LB? ==
737
738
739 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
740
741
742 = 7. Trouble Shooting =
743
744 == 7.1 AT Command input doesn't work ==
745
746
747 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
748
749
750 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
751
752
753 (((
754 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
755 )))
756
757 (((
758 Troubleshooting: Please avoid use of this product under such circumstance in practice.
759 )))
760
761
762 (((
763 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
764 )))
765
766 (((
767 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
768 )))
769
770
771 = 8. Order Info =
772
773
774 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
775
776 (% style="color:red" %)**XXX**(%%): **The default frequency band**
777
778 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
779
780 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
781
782 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
783
784 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
785
786 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
787
788 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
789
790 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
791
792 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
793
794 = 9. ​Packing Info =
795
796
797 (% style="color:#037691" %)**Package Includes**:
798
799 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
800
801 (% style="color:#037691" %)**Dimension and weight**:
802
803 * Device Size: cm
804
805 * Device Weight: g
806
807 * Package Size / pcs : cm
808
809 * Weight / pcs : g
810
811 = 10. Support =
812
813
814 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
815
816 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].