Version 82.12 by Xiaoling on 2023/06/14 17:06

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230614153353-1.png]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19 = 1. Introduction =
20
21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22
23
24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25
26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27
28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29
30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31
32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33
34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35
36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37
38 [[image:image-20230614162334-2.png||height="468" width="800"]]
39
40
41 == 1.2 ​Features ==
42
43
44 * LoRaWAN 1.0.3 Class A
45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 * Ultra-low power consumption
47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 * Monitor Battery Level
51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
53 * AT Commands to change parameters
54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57 == 1.3 Specification ==
58
59
60 (% style="color:#037691" %)**Common DC Characteristics:**
61
62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 * Operating Temperature: -40 ~~ 85°C
64
65 (% style="color:#037691" %)**Probe Specification:**
66
67 * Storage temperature:-20℃~~75℃
68 * Operating temperature : -20℃~~60℃
69 * Measure Distance:
70 ** 0.1m ~~ 12m @ 90% Reflectivity
71 ** 0.1m ~~ 4m @ 10% Reflectivity
72 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Distance resolution : 5mm
74 * Ambient light immunity : 70klux
75 * Enclosure rating : IP65
76 * Light source : LED
77 * Central wavelength : 850nm
78 * FOV : 3.6°
79 * Material of enclosure : ABS+PC
80 * Wire length : 25cm
81
82 (% style="color:#037691" %)**LoRa Spec:**
83
84 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 * Max +22 dBm constant RF output vs.
86 * RX sensitivity: down to -139 dBm.
87 * Excellent blocking immunity
88
89 (% style="color:#037691" %)**Battery:**
90
91 * Li/SOCI2 un-chargeable battery
92 * Capacity: 8500mAh
93 * Self-Discharge: <1% / Year @ 25°C
94 * Max continuously current: 130mA
95 * Max boost current: 2A, 1 second
96
97 (% style="color:#037691" %)**Power Consumption**
98
99 * Sleep Mode: 5uA @ 3.3v
100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101
102 == 1.4 Applications ==
103
104
105 * Horizontal distance measurement
106 * Parking management system
107 * Object proximity and presence detection
108 * Intelligent trash can management system
109 * Robot obstacle avoidance
110 * Automatic control
111 * Sewer
112
113 (% style="display:none" %)
114
115 == 1.5 Sleep mode and working mode ==
116
117
118 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119
120 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121
122
123 == 1.6 Button & LEDs ==
124
125
126 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
127
128
129 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
131 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 )))
135 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 )))
140 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141
142 == 1.7 BLE connection ==
143
144
145 LDS12-LB support BLE remote configure.
146
147 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148
149 * Press button to send an uplink
150 * Press button to active device.
151 * Device Power on or reset.
152
153 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154
155
156 == 1.8 Pin Definitions ==
157
158 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/WL03A-LB_LoRaWAN_None-Position_Rope_Type_Water_Leak_Controller_User_Manual/WebHome/image-20230613144156-1.png?rev=1.1||alt="image-20230613144156-1.png"]]
159
160
161
162 == 1.9 Mechanical ==
163
164
165 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
166
167
168 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
169
170
171 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
172
173
174 (% style="color:blue" %)**Probe Mechanical:**
175
176
177
178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
179
180
181 = 2. Configure LDS12-LB to connect to LoRaWAN network =
182
183 == 2.1 How it works ==
184
185
186 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
187
188 (% style="display:none" %) (%%)
189
190 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
191
192
193 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
194
195 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
196
197 [[image:image-20230614162359-3.png||height="468" width="800"]](% style="display:none" %)
198
199
200 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
201
202 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
203
204 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
205
206
207 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
208
209
210 (% style="color:blue" %)**Register the device**
211
212 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
213
214
215 (% style="color:blue" %)**Add APP EUI and DEV EUI**
216
217 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
218
219
220 (% style="color:blue" %)**Add APP EUI in the application**
221
222
223 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
224
225
226 (% style="color:blue" %)**Add APP KEY**
227
228 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
229
230
231 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
232
233
234 Press the button for 5 seconds to activate the LDS12-LB.
235
236 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
237
238 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
239
240
241 == 2.3 ​Uplink Payload ==
242
243
244 (((
245 LDS12-LB will uplink payload via LoRaWAN with below payload format: 
246 )))
247
248 (((
249 Uplink payload includes in total 11 bytes.
250 )))
251
252
253 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
254 |=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)(((
255 **Size(bytes)**
256 )))|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 62.5px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**|=(% style="background-color:#4F81BD;color:white" %)**1**
257 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
258 [[Temperature DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
259 )))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4Distancesignalstrength"]]|(((
260 [[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
261 )))|[[LiDAR temp>>||anchor="H2.3.6LiDARtemp"]]|(((
262 [[Message Type>>||anchor="H2.3.7MessageType"]]
263 )))
264
265 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654833689380-972.png?rev=1.1||alt="1654833689380-972.png"]]
266
267
268 === 2.3.1 Battery Info ===
269
270
271 Check the battery voltage for LDS12-LB.
272
273 Ex1: 0x0B45 = 2885mV
274
275 Ex2: 0x0B49 = 2889mV
276
277
278 === 2.3.2 DS18B20 Temperature sensor ===
279
280
281 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
282
283
284 **Example**:
285
286 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
287
288 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
289
290
291 === 2.3.3 Distance ===
292
293
294 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
295
296
297 **Example**:
298
299 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
300
301
302 === 2.3.4 Distance signal strength ===
303
304
305 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
306
307
308 **Example**:
309
310 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
311
312 Customers can judge whether they need to adjust the environment based on the signal strength.
313
314
315 === 2.3.5 Interrupt Pin ===
316
317
318 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
319
320 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
321
322 **Example:**
323
324 0x00: Normal uplink packet.
325
326 0x01: Interrupt Uplink Packet.
327
328
329 === 2.3.6 LiDAR temp ===
330
331
332 Characterize the internal temperature value of the sensor.
333
334 **Example: **
335 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
336 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
337
338
339 === 2.3.7 Message Type ===
340
341
342 (((
343 For a normal uplink payload, the message type is always 0x01.
344 )))
345
346 (((
347 Valid Message Type:
348 )))
349
350 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
351 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
352 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
353 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
354
355
356
357 === 2.3.8 Decode payload in The Things Network ===
358
359
360 While using TTN network, you can add the payload format to decode the payload.
361
362 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
363
364
365 (((
366 The payload decoder function for TTN is here:
367 )))
368
369 (((
370 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
371 )))
372
373
374 == 2.4 Uplink Interval ==
375
376
377 The LDS12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>||anchor="H3.3.1SetTransmitIntervalTime"]]
378
379
380 == 2.5 ​Show Data in DataCake IoT Server ==
381
382
383 (((
384 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
385 )))
386
387
388 (((
389 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
390 )))
391
392 (((
393 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
394 )))
395
396
397 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
398
399
400 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
401
402
403 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
404
405 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
406
407 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
408
409
410 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
411
412 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
413
414
415 == 2.6 Datalog Feature ==
416
417
418 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
419
420
421 === 2.6.1 Ways to get datalog via LoRaWAN ===
422
423
424 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
425
426 * (((
427 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
428 )))
429 * (((
430 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
431 )))
432
433 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
434
435 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
436
437
438 === 2.6.2 Unix TimeStamp ===
439
440
441 LDS12-LB uses Unix TimeStamp format based on
442
443 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
444
445 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
446
447 Below is the converter example
448
449 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
450
451
452 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
453
454
455 === 2.6.3 Set Device Time ===
456
457
458 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
459
460 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
461
462 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
463
464
465 === 2.6.4 Poll sensor value ===
466
467
468 Users can poll sensor values based on timestamps. Below is the downlink command.
469
470 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
471 |(% colspan="4" style="background-color:#d9e2f3; color:#0070c0; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
472 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
473 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
474
475 (((
476 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
477 )))
478
479 (((
480 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
481 )))
482
483 (((
484 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
485 )))
486
487 (((
488 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
489 )))
490
491
492 == 2.7 Frequency Plans ==
493
494
495 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
496
497 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
498
499
500 == 2.8 LiDAR ToF Measurement ==
501
502 === 2.8.1 Principle of Distance Measurement ===
503
504
505 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
506
507
508 [[image:1654831757579-263.png]]
509
510
511 === 2.8.2 Distance Measurement Characteristics ===
512
513
514 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
515
516 [[image:1654831774373-275.png]]
517
518
519 (((
520 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
521 )))
522
523 (((
524 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
525 )))
526
527 (((
528 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
529 )))
530
531
532 (((
533 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
534 )))
535
536
537 [[image:1654831797521-720.png]]
538
539
540 (((
541 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
542 )))
543
544 [[image:1654831810009-716.png]]
545
546
547 (((
548 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
549 )))
550
551
552 === 2.8.3 Notice of usage: ===
553
554
555 Possible invalid /wrong reading for LiDAR ToF tech:
556
557 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
558 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
559 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
560 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
561
562 === 2.8.4  Reflectivity of different objects ===
563
564
565 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
566 |=(% style="width: 54px;background-color:#D9E2F3;color:#0070C0" %)Item|=(% style="width: 231px;background-color:#D9E2F3;color:#0070C0" %)Material|=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Relectivity
567 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
568 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
569 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
570 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
571 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
572 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
573 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
574 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
575 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
576 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
577 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
578 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
579 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
580 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
581 |(% style="width:53px" %)15|(% style="width:229px" %)(((
582 Unpolished white metal surface
583 )))|(% style="width:93px" %)130%
584 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
585 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
586 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
587
588 = 3. Configure LDS12-LB =
589
590 == 3.1 Configure Methods ==
591
592
593 LDS12-LB supports below configure method:
594
595 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
596
597 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
598
599 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
600
601 == 3.2 General Commands ==
602
603
604 These commands are to configure:
605
606 * General system settings like: uplink interval.
607
608 * LoRaWAN protocol & radio related command.
609
610 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
611
612 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
613
614
615 == 3.3 Commands special design for LDS12-LB ==
616
617
618 These commands only valid for LDS12-LB, as below:
619
620
621 === 3.3.1 Set Transmit Interval Time ===
622
623
624 (((
625 Feature: Change LoRaWAN End Node Transmit Interval.
626 )))
627
628 (((
629 (% style="color:blue" %)**AT Command: AT+TDC**
630 )))
631
632 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
633 |=(% style="width: 156px;background-color:#D9E2F3; color:#0070c0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3; color:#0070c0" %)**Function**|=(% style="background-color:#D9E2F3; color:#0070c0" %)**Response**
634 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
635 30000
636 OK
637 the interval is 30000ms = 30s
638 )))
639 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
640 OK
641 Set transmit interval to 60000ms = 60 seconds
642 )))
643
644 (((
645 (% style="color:blue" %)**Downlink Command: 0x01**
646 )))
647
648 (((
649 Format: Command Code (0x01) followed by 3 bytes time value.
650 )))
651
652 (((
653 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
654 )))
655
656 * (((
657 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
658 )))
659 * (((
660 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
661 )))
662
663 === 3.3.2 Set Interrupt Mode ===
664
665
666 Feature, Set Interrupt mode for PA8 of pin.
667
668 When AT+INTMOD=0 is set, PA8 is used as a digital input port.
669
670 (% style="color:blue" %)**AT Command: AT+INTMOD**
671
672 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
673 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
674 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
675 0
676 OK
677 the mode is 0 =Disable Interrupt
678 )))
679 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
680 Set Transmit Interval
681 0. (Disable Interrupt),
682 ~1. (Trigger by rising and falling edge)
683 2. (Trigger by falling edge)
684 3. (Trigger by rising edge)
685 )))|(% style="width:157px" %)OK
686
687 (% style="color:blue" %)**Downlink Command: 0x06**
688
689 Format: Command Code (0x06) followed by 3 bytes.
690
691 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
692
693 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
694
695 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
696
697
698 === 3.3.3 Get Firmware Version Info ===
699
700
701 Feature: use downlink to get firmware version.
702
703 (% style="color:#037691" %)**Downlink Command: 0x26**
704
705 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:492px" %)
706 |(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Downlink Control Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:57px" %)**FPort**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Downlink payload size(bytes)**
707 |(% style="width:191px" %)Get Firmware Version Info|(% style="width:57px" %)Any|(% style="width:91px" %)26|(% style="width:151px" %)2
708
709 * Reply to the confirmation package: 26 01
710 * Reply to non-confirmed packet: 26 00
711
712 Device will send an uplink after got this downlink command. With below payload:
713
714 Configures info payload:
715
716 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
717 |=(% style="background-color:#D9E2F3;color:#0070C0" %)(((
718 **Size(bytes)**
719 )))|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**5**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
720 |**Value**|Software Type|(((
721 Frequency
722 Band
723 )))|Sub-band|(((
724 Firmware
725 Version
726 )))|Sensor Type|Reserve|(((
727 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
728 Always 0x02
729 )))
730
731 (% style="color:#037691" %)**Software Type**(%%): Always 0x03 for LLDS12
732
733 (% style="color:#037691" %)**Frequency Band**:
734
735 *0x01: EU868
736
737 *0x02: US915
738
739 *0x03: IN865
740
741 *0x04: AU915
742
743 *0x05: KZ865
744
745 *0x06: RU864
746
747 *0x07: AS923
748
749 *0x08: AS923-1
750
751 *0x09: AS923-2
752
753 *0xa0: AS923-3
754
755
756 (% style="color:#037691" %)**Sub-Band**(%%): value 0x00 ~~ 0x08
757
758 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
759
760 (% style="color:#037691" %)**Sensor Type**:
761
762 0x01: LSE01
763
764 0x02: LDDS75
765
766 0x03: LDDS20
767
768 0x04: LLMS01
769
770 0x05: LSPH01
771
772 0x06: LSNPK01
773
774 0x07: LLDS12
775
776
777 = 4. Battery & Power Consumption =
778
779
780 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
781
782 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
783
784
785 = 5. OTA Firmware update =
786
787
788 (% class="wikigeneratedid" %)
789 User can change firmware LDS12-LB to:
790
791 * Change Frequency band/ region.
792
793 * Update with new features.
794
795 * Fix bugs.
796
797 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/ph4uyz0rchflrnw/AADr1f_5Sg30804NItpfOQbla?dl=0]]**
798
799 Methods to Update Firmware:
800
801 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
802
803 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
804
805 = 6. FAQ =
806
807 == 6.1 What is the frequency plan for LDS12-LB? ==
808
809
810 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
811
812
813 = 7. Trouble Shooting =
814
815 == 7.1 AT Command input doesn't work ==
816
817
818 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
819
820
821 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
822
823
824 (((
825 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
826 )))
827
828 (((
829 Troubleshooting: Please avoid use of this product under such circumstance in practice.
830 )))
831
832
833 (((
834 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
835 )))
836
837 (((
838 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
839 )))
840
841
842 = 8. Order Info =
843
844
845 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
846
847 (% style="color:red" %)**XXX**(%%): **The default frequency band**
848
849 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
850
851 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
852
853 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
854
855 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
856
857 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
858
859 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
860
861 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
862
863 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
864
865 = 9. ​Packing Info =
866
867
868 (% style="color:#037691" %)**Package Includes**:
869
870 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
871
872 (% style="color:#037691" %)**Dimension and weight**:
873
874 * Device Size: cm
875
876 * Device Weight: g
877
878 * Package Size / pcs : cm
879
880 * Weight / pcs : g
881
882 = 10. Support =
883
884
885 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
886
887 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].