Version 113.3 by Xiaoling on 2023/11/10 09:28

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20231110085342-2.png||height="481" width="481"]]
3
4
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is LoRaWAN Smart Distance Detector ==
23
24
25 The Dragino (% style="color:blue" %)**DS20L is a smart distance detector**(%%) base on long-range wireless LoRaWAN technology. It uses (% style="color:blue" %)**LiDAR sensor**(%%) to detect the distance between DS20L and object, then DS20L will send the distance data to the IoT Platform via LoRaWAN.
26
27 DS20L allows users to send data and reach extremely long ranges via LoRaWAN. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current 
28 consumption. It targets professional wireless sensor network applications such smart cities, building automation, and so on.
29
30 DS20L has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) for long-term use up to several years*. Users can also power DS20L with an external power source for (% style="color:blue" %)**continuous measuring and distance alarm / counting purposes.**
31
32 DS20L is fully compatible with (% style="color:blue" %)**LoRaWAN v1.0.3 Class A protocol**(%%), it can work with a standard LoRaWAN gateway.
33
34 DS20L supports (% style="color:blue" %)**Datalog feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
35
36 [[image:image-20231110091506-4.png||height="391" width="768"]]
37
38
39 == 1.2 ​Features ==
40
41
42 * LoRaWAN 1.0.3 Class A
43 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
44 * Ultra-low power consumption
45 * Laser technology for distance detection
46 * Measure Distance: 0.1m~~12m
47 * Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
48 * Monitor Battery Level
49 * Support Bluetooth v5.1 and LoRaWAN remote configure
50 * Support wireless OTA update firmware
51 * AT Commands to change parameters
52 * Downlink to change configure
53 * 8500mAh Battery for long term use
54
55 == 1.3 Specification ==
56
57
58 (% style="color:#037691" %)**Common DC Characteristics:**
59
60 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
61 * Operating Temperature: -40 ~~ 85°C
62
63 (% style="color:#037691" %)**Probe Specification:**
64
65 * Storage temperature:-20℃~~75℃
66 * Operating temperature : -20℃~~60℃
67 * Measure Distance:
68 ** 0.1m ~~ 12m @ 90% Reflectivity
69 ** 0.1m ~~ 4m @ 10% Reflectivity
70 * Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
71 * Distance resolution : 1cm
72 * Ambient light immunity : 70klux
73 * Enclosure rating : IP65
74 * Light source : LED
75 * Central wavelength : 850nm
76 * FOV : 3.6°
77 * Material of enclosure : ABS+PC
78 * Wire length : 25cm
79
80 (% style="color:#037691" %)**LoRa Spec:**
81
82 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
83 * Max +22 dBm constant RF output vs.
84 * RX sensitivity: down to -139 dBm.
85 * Excellent blocking immunity
86
87 (% style="color:#037691" %)**Battery:**
88
89 * Li/SOCI2 un-chargeable battery
90 * Capacity: 8500mAh
91 * Self-Discharge: <1% / Year @ 25°C
92 * Max continuously current: 130mA
93 * Max boost current: 2A, 1 second
94
95 (% style="color:#037691" %)**Power Consumption**
96
97 * Sleep Mode: 5uA @ 3.3v
98 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
99
100 == 1.4 Applications ==
101
102
103 * Horizontal distance measurement
104 * Parking management system
105 * Object proximity and presence detection
106 * Intelligent trash can management system
107 * Robot obstacle avoidance
108 * Automatic control
109 * Sewer
110
111 (% style="display:none" %)
112
113 == 1.5 Sleep mode and working mode ==
114
115
116 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
117
118 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
119
120
121 == 1.6 Button & LEDs ==
122
123
124 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
125
126
127 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
128 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
129 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
130 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
131 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
132 )))
133 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
134 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
135 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
136 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
137 )))
138 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
139
140 == 1.7 BLE connection ==
141
142
143 LDS12-LB support BLE remote configure.
144
145 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
146
147 * Press button to send an uplink
148 * Press button to active device.
149 * Device Power on or reset.
150
151 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
152
153
154 == 1.8 Pin Definitions ==
155
156
157 [[image:image-20230805144259-1.png||height="413" width="741"]]
158
159 == 1.9 Mechanical ==
160
161
162 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
163
164
165 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
166
167
168 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
169
170
171 (% style="color:blue" %)**Probe Mechanical:**
172
173
174 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
175
176
177 = 2. Configure LDS12-LB to connect to LoRaWAN network =
178
179 == 2.1 How it works ==
180
181
182 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
183
184 (% style="display:none" %) (%%)
185
186 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
187
188
189 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
190
191 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
192
193 [[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
194
195
196 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
197
198 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
199
200 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
201
202
203 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
204
205
206 (% style="color:blue" %)**Register the device**
207
208 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
209
210
211 (% style="color:blue" %)**Add APP EUI and DEV EUI**
212
213 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
214
215
216 (% style="color:blue" %)**Add APP EUI in the application**
217
218
219 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
220
221
222 (% style="color:blue" %)**Add APP KEY**
223
224 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
225
226
227 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
228
229
230 Press the button for 5 seconds to activate the LDS12-LB.
231
232 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
233
234 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
235
236
237 == 2.3 ​Uplink Payload ==
238
239 === 2.3.1 Device Status, FPORT~=5 ===
240
241
242 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
243
244 The Payload format is as below.
245
246 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
247 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
248 **Size(bytes)**
249 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
250 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
251
252 Example parse in TTNv3
253
254 [[image:image-20230805103904-1.png||height="131" width="711"]]
255
256 (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
257
258 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
259
260 (% style="color:blue" %)**Frequency Band**:
261
262 0x01: EU868
263
264 0x02: US915
265
266 0x03: IN865
267
268 0x04: AU915
269
270 0x05: KZ865
271
272 0x06: RU864
273
274 0x07: AS923
275
276 0x08: AS923-1
277
278 0x09: AS923-2
279
280 0x0a: AS923-3
281
282 0x0b: CN470
283
284 0x0c: EU433
285
286 0x0d: KR920
287
288 0x0e: MA869
289
290 (% style="color:blue" %)**Sub-Band**:
291
292 AU915 and US915:value 0x00 ~~ 0x08
293
294 CN470: value 0x0B ~~ 0x0C
295
296 Other Bands: Always 0x00
297
298 (% style="color:blue" %)**Battery Info**:
299
300 Check the battery voltage.
301
302 Ex1: 0x0B45 = 2885mV
303
304 Ex2: 0x0B49 = 2889mV
305
306
307 === 2.3.2 Uplink Payload, FPORT~=2 ===
308
309
310 (((
311 LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
312
313 periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
314
315 Uplink Payload totals 11 bytes.
316 )))
317
318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
319 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
320 **Size(bytes)**
321 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
322 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
323 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
324 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
325 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
326 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
327 [[Message Type>>||anchor="HMessageType"]]
328 )))
329
330 [[image:image-20230805104104-2.png||height="136" width="754"]]
331
332
333 ==== (% style="color:blue" %)**Battery Info**(%%) ====
334
335
336 Check the battery voltage for LDS12-LB.
337
338 Ex1: 0x0B45 = 2885mV
339
340 Ex2: 0x0B49 = 2889mV
341
342
343 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
344
345
346 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
347
348
349 **Example**:
350
351 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
352
353 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
354
355
356 ==== (% style="color:blue" %)**Distance**(%%) ====
357
358
359 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
360
361
362 **Example**:
363
364 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
365
366
367 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
368
369
370 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
371
372
373 **Example**:
374
375 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
376
377 Customers can judge whether they need to adjust the environment based on the signal strength.
378
379
380 **1) When the sensor detects valid data:**
381
382 [[image:image-20230805155335-1.png||height="145" width="724"]]
383
384
385 **2) When the sensor detects invalid data:**
386
387 [[image:image-20230805155428-2.png||height="139" width="726"]]
388
389
390 **3) When the sensor is not connected:**
391
392 [[image:image-20230805155515-3.png||height="143" width="725"]]
393
394
395 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
396
397
398 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
399
400 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
401
402 **Example:**
403
404 If byte[0]&0x01=0x00 : Normal uplink packet.
405
406 If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
407
408
409 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
410
411
412 Characterize the internal temperature value of the sensor.
413
414 **Example: **
415 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
416 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
417
418
419 ==== (% style="color:blue" %)**Message Type**(%%) ====
420
421
422 (((
423 For a normal uplink payload, the message type is always 0x01.
424 )))
425
426 (((
427 Valid Message Type:
428 )))
429
430 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
431 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
432 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
433 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
434
435 [[image:image-20230805150315-4.png||height="233" width="723"]]
436
437
438 === 2.3.3 Historical measuring distance, FPORT~=3 ===
439
440
441 LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
442
443 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
444
445 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
446 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
447 **Size(bytes)**
448 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
449 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
450 Reserve(0xFF)
451 )))|Distance|Distance signal strength|(% style="width:88px" %)(((
452 LiDAR temp
453 )))|(% style="width:85px" %)Unix TimeStamp
454
455 **Interrupt flag & Interrupt level:**
456
457 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
458 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
459 **Size(bit)**
460 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
461 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
462 Interrupt flag
463 )))
464
465 * (((
466 Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
467 )))
468
469 For example, in the US915 band, the max payload for different DR is:
470
471 **a) DR0:** max is 11 bytes so one entry of data
472
473 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
474
475 **c) DR2:** total payload includes 11 entries of data
476
477 **d) DR3:** total payload includes 22 entries of data.
478
479 If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
480
481
482 **Downlink:**
483
484 0x31 64 CC 68 0C 64 CC 69 74 05
485
486 [[image:image-20230805144936-2.png||height="113" width="746"]]
487
488 **Uplink:**
489
490 43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
491
492
493 **Parsed Value:**
494
495 [DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
496
497
498 [360,176,30,High,True,2023-08-04 02:53:00],
499
500 [355,168,30,Low,False,2023-08-04 02:53:29],
501
502 [245,211,30,Low,False,2023-08-04 02:54:29],
503
504 [57,700,30,Low,False,2023-08-04 02:55:29],
505
506 [361,164,30,Low,True,2023-08-04 02:56:00],
507
508 [337,184,30,Low,False,2023-08-04 02:56:40],
509
510 [20,4458,30,Low,False,2023-08-04 02:57:40],
511
512 [362,173,30,Low,False,2023-08-04 02:58:53],
513
514
515 **History read from serial port:**
516
517 [[image:image-20230805145056-3.png]]
518
519
520 === 2.3.4 Decode payload in The Things Network ===
521
522
523 While using TTN network, you can add the payload format to decode the payload.
524
525 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
526
527
528 (((
529 The payload decoder function for TTN is here:
530 )))
531
532 (((
533 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
534 )))
535
536
537 == 2.4 ​Show Data in DataCake IoT Server ==
538
539
540 (((
541 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
542 )))
543
544
545 (((
546 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
547 )))
548
549 (((
550 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
551 )))
552
553
554 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
555
556
557 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
558
559
560 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
561
562 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
563
564 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
565
566
567 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
568
569 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
570
571
572 == 2.5 Datalog Feature ==
573
574
575 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
576
577
578 === 2.5.1 Ways to get datalog via LoRaWAN ===
579
580
581 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
582
583 * (((
584 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
585 )))
586 * (((
587 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
588 )))
589
590 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
591
592 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
593
594
595 === 2.5.2 Unix TimeStamp ===
596
597
598 LDS12-LB uses Unix TimeStamp format based on
599
600 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
601
602 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
603
604 Below is the converter example
605
606 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
607
608
609 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
610
611
612 === 2.5.3 Set Device Time ===
613
614
615 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
616
617 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
618
619 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
620
621
622 === 2.5.4 Poll sensor value ===
623
624
625 Users can poll sensor values based on timestamps. Below is the downlink command.
626
627 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
628 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
629 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
630 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
631
632 (((
633 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
634 )))
635
636 (((
637 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
638 )))
639
640 (((
641 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
642 )))
643
644 (((
645 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
646 )))
647
648
649 == 2.6 Frequency Plans ==
650
651
652 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
653
654 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
655
656
657 == 2.7 LiDAR ToF Measurement ==
658
659 === 2.7.1 Principle of Distance Measurement ===
660
661
662 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
663
664 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
665
666
667 === 2.7.2 Distance Measurement Characteristics ===
668
669
670 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
671
672 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
673
674
675 (((
676 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
677 )))
678
679 (((
680 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
681 )))
682
683 (((
684 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
685 )))
686
687
688 (((
689 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
690 )))
691
692 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
693
694 (((
695 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
696 )))
697
698 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
699
700 (((
701 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
702 )))
703
704
705 === 2.7.3 Notice of usage ===
706
707
708 Possible invalid /wrong reading for LiDAR ToF tech:
709
710 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
711 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
712 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
713 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
714
715 === 2.7.4  Reflectivity of different objects ===
716
717
718 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
719 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
720 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
721 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
722 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
723 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
724 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
725 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
726 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
727 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
728 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
729 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
730 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
731 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
732 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
733 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
734 |(% style="width:53px" %)15|(% style="width:229px" %)(((
735 Unpolished white metal surface
736 )))|(% style="width:93px" %)130%
737 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
738 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
739 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
740
741 = 3. Configure LDS12-LB =
742
743 == 3.1 Configure Methods ==
744
745
746 LDS12-LB supports below configure method:
747
748 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
749
750 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
751
752 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
753
754 == 3.2 General Commands ==
755
756
757 These commands are to configure:
758
759 * General system settings like: uplink interval.
760
761 * LoRaWAN protocol & radio related command.
762
763 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
764
765 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
766
767
768 == 3.3 Commands special design for LDS12-LB ==
769
770
771 These commands only valid for LDS12-LB, as below:
772
773
774 === 3.3.1 Set Transmit Interval Time ===
775
776
777 (((
778 Feature: Change LoRaWAN End Node Transmit Interval.
779 )))
780
781 (((
782 (% style="color:blue" %)**AT Command: AT+TDC**
783 )))
784
785 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
786 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
787 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
788 30000
789 OK
790 the interval is 30000ms = 30s
791 )))
792 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
793 OK
794 Set transmit interval to 60000ms = 60 seconds
795 )))
796
797 (((
798 (% style="color:blue" %)**Downlink Command: 0x01**
799 )))
800
801 (((
802 Format: Command Code (0x01) followed by 3 bytes time value.
803 )))
804
805 (((
806 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
807 )))
808
809 * (((
810 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
811 )))
812 * (((
813 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
814
815
816
817 )))
818
819 === 3.3.2 Set Interrupt Mode ===
820
821
822 Feature, Set Interrupt mode for pin of GPIO_EXTI.
823
824 When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
825
826 (% style="color:blue" %)**AT Command: AT+INTMOD**
827
828 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
829 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
830 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
831 0
832 OK
833 the mode is 0 =Disable Interrupt
834 )))
835 |(% style="width:154px" %)(((
836 AT+INTMOD=2
837
838 (default)
839 )))|(% style="width:196px" %)(((
840 Set Transmit Interval
841 0. (Disable Interrupt),
842 ~1. (Trigger by rising and falling edge)
843 2. (Trigger by falling edge)
844 3. (Trigger by rising edge)
845 )))|(% style="width:157px" %)OK
846
847 (% style="color:blue" %)**Downlink Command: 0x06**
848
849 Format: Command Code (0x06) followed by 3 bytes.
850
851 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
852
853 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
854
855 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
856
857 === 3.3.3  Set Power Output Duration ===
858
859 Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
860
861 ~1. first enable the power output to external sensor,
862
863 2. keep it on as per duration, read sensor value and construct uplink payload
864
865 3. final, close the power output.
866
867 (% style="color:blue" %)**AT Command: AT+3V3T**
868
869 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
870 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
871 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
872 OK
873 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
874 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
875 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
876
877 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
878 Format: Command Code (0x07) followed by 3 bytes.
879
880 The first byte is 01,the second and third bytes are the time to turn on.
881
882 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
883 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
884 * Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
885
886 = 4. Battery & Power Consumption =
887
888
889 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
890
891 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
892
893
894 = 5. OTA Firmware update =
895
896
897 (% class="wikigeneratedid" %)
898 User can change firmware LDS12-LB to:
899
900 * Change Frequency band/ region.
901
902 * Update with new features.
903
904 * Fix bugs.
905
906 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
907
908 Methods to Update Firmware:
909
910 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
911
912 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
913
914 = 6. FAQ =
915
916 == 6.1 What is the frequency plan for LDS12-LB? ==
917
918
919 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
920
921
922 = 7. Trouble Shooting =
923
924 == 7.1 AT Command input doesn't work ==
925
926
927 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
928
929
930 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
931
932
933 (((
934 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
935 )))
936
937 (((
938 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
939 )))
940
941
942 (((
943 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
944 )))
945
946 (((
947 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
948 )))
949
950
951 = 8. Order Info =
952
953
954 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
955
956 (% style="color:red" %)**XXX**(%%): **The default frequency band**
957
958 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
959
960 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
961
962 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
963
964 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
965
966 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
967
968 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
969
970 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
971
972 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
973
974 = 9. ​Packing Info =
975
976
977 (% style="color:#037691" %)**Package Includes**:
978
979 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
980
981 (% style="color:#037691" %)**Dimension and weight**:
982
983 * Device Size: cm
984
985 * Device Weight: g
986
987 * Package Size / pcs : cm
988
989 * Weight / pcs : g
990
991 = 10. Support =
992
993
994 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
995
996 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].