Version 113.2 by Xiaoling on 2023/11/10 09:15

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20231110085342-2.png||height="481" width="481"]]
3
4
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
23
24
25 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
26
27 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28
29 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30
31 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32
33 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
34
35 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
36
37 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38
39 [[image:image-20231110091506-4.png||height="391" width="768"]]
40
41
42 == 1.2 ​Features ==
43
44
45 * LoRaWAN 1.0.3 Class A
46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 * Ultra-low power consumption
48 * Laser technology for distance detection
49 * Measure Distance: 0.1m~~12m
50 * Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
51 * Monitor Battery Level
52 * Support Bluetooth v5.1 and LoRaWAN remote configure
53 * Support wireless OTA update firmware
54 * AT Commands to change parameters
55 * Downlink to change configure
56 * 8500mAh Battery for long term use
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Common DC Characteristics:**
62
63 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 * Operating Temperature: -40 ~~ 85°C
65
66 (% style="color:#037691" %)**Probe Specification:**
67
68 * Storage temperature:-20℃~~75℃
69 * Operating temperature : -20℃~~60℃
70 * Measure Distance:
71 ** 0.1m ~~ 12m @ 90% Reflectivity
72 ** 0.1m ~~ 4m @ 10% Reflectivity
73 * Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
74 * Distance resolution : 1cm
75 * Ambient light immunity : 70klux
76 * Enclosure rating : IP65
77 * Light source : LED
78 * Central wavelength : 850nm
79 * FOV : 3.6°
80 * Material of enclosure : ABS+PC
81 * Wire length : 25cm
82
83 (% style="color:#037691" %)**LoRa Spec:**
84
85 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
86 * Max +22 dBm constant RF output vs.
87 * RX sensitivity: down to -139 dBm.
88 * Excellent blocking immunity
89
90 (% style="color:#037691" %)**Battery:**
91
92 * Li/SOCI2 un-chargeable battery
93 * Capacity: 8500mAh
94 * Self-Discharge: <1% / Year @ 25°C
95 * Max continuously current: 130mA
96 * Max boost current: 2A, 1 second
97
98 (% style="color:#037691" %)**Power Consumption**
99
100 * Sleep Mode: 5uA @ 3.3v
101 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
102
103 == 1.4 Applications ==
104
105
106 * Horizontal distance measurement
107 * Parking management system
108 * Object proximity and presence detection
109 * Intelligent trash can management system
110 * Robot obstacle avoidance
111 * Automatic control
112 * Sewer
113
114 (% style="display:none" %)
115
116 == 1.5 Sleep mode and working mode ==
117
118
119 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
120
121 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
122
123
124 == 1.6 Button & LEDs ==
125
126
127 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
128
129
130 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
131 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
132 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
133 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
134 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
135 )))
136 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
137 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
138 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
139 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
140 )))
141 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
142
143 == 1.7 BLE connection ==
144
145
146 LDS12-LB support BLE remote configure.
147
148 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
149
150 * Press button to send an uplink
151 * Press button to active device.
152 * Device Power on or reset.
153
154 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
155
156
157 == 1.8 Pin Definitions ==
158
159
160 [[image:image-20230805144259-1.png||height="413" width="741"]]
161
162 == 1.9 Mechanical ==
163
164
165 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
166
167
168 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
169
170
171 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
172
173
174 (% style="color:blue" %)**Probe Mechanical:**
175
176
177 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
178
179
180 = 2. Configure LDS12-LB to connect to LoRaWAN network =
181
182 == 2.1 How it works ==
183
184
185 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
186
187 (% style="display:none" %) (%%)
188
189 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
190
191
192 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
193
194 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
195
196 [[image:image-20231110091447-3.png||height="383" width="752"]](% style="display:none" %)
197
198
199 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
200
201 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
202
203 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
204
205
206 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
207
208
209 (% style="color:blue" %)**Register the device**
210
211 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
212
213
214 (% style="color:blue" %)**Add APP EUI and DEV EUI**
215
216 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
217
218
219 (% style="color:blue" %)**Add APP EUI in the application**
220
221
222 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
223
224
225 (% style="color:blue" %)**Add APP KEY**
226
227 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
228
229
230 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
231
232
233 Press the button for 5 seconds to activate the LDS12-LB.
234
235 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
236
237 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
238
239
240 == 2.3 ​Uplink Payload ==
241
242 === 2.3.1 Device Status, FPORT~=5 ===
243
244
245 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
246
247 The Payload format is as below.
248
249 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
250 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
251 **Size(bytes)**
252 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
253 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
254
255 Example parse in TTNv3
256
257 [[image:image-20230805103904-1.png||height="131" width="711"]]
258
259 (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
260
261 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
262
263 (% style="color:blue" %)**Frequency Band**:
264
265 0x01: EU868
266
267 0x02: US915
268
269 0x03: IN865
270
271 0x04: AU915
272
273 0x05: KZ865
274
275 0x06: RU864
276
277 0x07: AS923
278
279 0x08: AS923-1
280
281 0x09: AS923-2
282
283 0x0a: AS923-3
284
285 0x0b: CN470
286
287 0x0c: EU433
288
289 0x0d: KR920
290
291 0x0e: MA869
292
293 (% style="color:blue" %)**Sub-Band**:
294
295 AU915 and US915:value 0x00 ~~ 0x08
296
297 CN470: value 0x0B ~~ 0x0C
298
299 Other Bands: Always 0x00
300
301 (% style="color:blue" %)**Battery Info**:
302
303 Check the battery voltage.
304
305 Ex1: 0x0B45 = 2885mV
306
307 Ex2: 0x0B49 = 2889mV
308
309
310 === 2.3.2 Uplink Payload, FPORT~=2 ===
311
312
313 (((
314 LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
315
316 periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
317
318 Uplink Payload totals 11 bytes.
319 )))
320
321 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
322 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
323 **Size(bytes)**
324 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
325 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
326 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
327 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
328 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
329 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
330 [[Message Type>>||anchor="HMessageType"]]
331 )))
332
333 [[image:image-20230805104104-2.png||height="136" width="754"]]
334
335
336 ==== (% style="color:blue" %)**Battery Info**(%%) ====
337
338
339 Check the battery voltage for LDS12-LB.
340
341 Ex1: 0x0B45 = 2885mV
342
343 Ex2: 0x0B49 = 2889mV
344
345
346 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
347
348
349 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
350
351
352 **Example**:
353
354 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
355
356 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
357
358
359 ==== (% style="color:blue" %)**Distance**(%%) ====
360
361
362 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
363
364
365 **Example**:
366
367 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
368
369
370 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
371
372
373 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
374
375
376 **Example**:
377
378 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
379
380 Customers can judge whether they need to adjust the environment based on the signal strength.
381
382
383 **1) When the sensor detects valid data:**
384
385 [[image:image-20230805155335-1.png||height="145" width="724"]]
386
387
388 **2) When the sensor detects invalid data:**
389
390 [[image:image-20230805155428-2.png||height="139" width="726"]]
391
392
393 **3) When the sensor is not connected:**
394
395 [[image:image-20230805155515-3.png||height="143" width="725"]]
396
397
398 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
399
400
401 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
402
403 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
404
405 **Example:**
406
407 If byte[0]&0x01=0x00 : Normal uplink packet.
408
409 If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
410
411
412 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
413
414
415 Characterize the internal temperature value of the sensor.
416
417 **Example: **
418 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
419 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
420
421
422 ==== (% style="color:blue" %)**Message Type**(%%) ====
423
424
425 (((
426 For a normal uplink payload, the message type is always 0x01.
427 )))
428
429 (((
430 Valid Message Type:
431 )))
432
433 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
434 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
435 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
436 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
437
438 [[image:image-20230805150315-4.png||height="233" width="723"]]
439
440
441 === 2.3.3 Historical measuring distance, FPORT~=3 ===
442
443
444 LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
445
446 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
447
448 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
449 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
450 **Size(bytes)**
451 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
452 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
453 Reserve(0xFF)
454 )))|Distance|Distance signal strength|(% style="width:88px" %)(((
455 LiDAR temp
456 )))|(% style="width:85px" %)Unix TimeStamp
457
458 **Interrupt flag & Interrupt level:**
459
460 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
461 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
462 **Size(bit)**
463 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
464 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
465 Interrupt flag
466 )))
467
468 * (((
469 Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
470 )))
471
472 For example, in the US915 band, the max payload for different DR is:
473
474 **a) DR0:** max is 11 bytes so one entry of data
475
476 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
477
478 **c) DR2:** total payload includes 11 entries of data
479
480 **d) DR3:** total payload includes 22 entries of data.
481
482 If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
483
484
485 **Downlink:**
486
487 0x31 64 CC 68 0C 64 CC 69 74 05
488
489 [[image:image-20230805144936-2.png||height="113" width="746"]]
490
491 **Uplink:**
492
493 43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
494
495
496 **Parsed Value:**
497
498 [DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
499
500
501 [360,176,30,High,True,2023-08-04 02:53:00],
502
503 [355,168,30,Low,False,2023-08-04 02:53:29],
504
505 [245,211,30,Low,False,2023-08-04 02:54:29],
506
507 [57,700,30,Low,False,2023-08-04 02:55:29],
508
509 [361,164,30,Low,True,2023-08-04 02:56:00],
510
511 [337,184,30,Low,False,2023-08-04 02:56:40],
512
513 [20,4458,30,Low,False,2023-08-04 02:57:40],
514
515 [362,173,30,Low,False,2023-08-04 02:58:53],
516
517
518 **History read from serial port:**
519
520 [[image:image-20230805145056-3.png]]
521
522
523 === 2.3.4 Decode payload in The Things Network ===
524
525
526 While using TTN network, you can add the payload format to decode the payload.
527
528 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
529
530
531 (((
532 The payload decoder function for TTN is here:
533 )))
534
535 (((
536 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
537 )))
538
539
540 == 2.4 ​Show Data in DataCake IoT Server ==
541
542
543 (((
544 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
545 )))
546
547
548 (((
549 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
550 )))
551
552 (((
553 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
554 )))
555
556
557 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
558
559
560 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
561
562
563 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
564
565 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
566
567 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
568
569
570 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
571
572 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
573
574
575 == 2.5 Datalog Feature ==
576
577
578 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
579
580
581 === 2.5.1 Ways to get datalog via LoRaWAN ===
582
583
584 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
585
586 * (((
587 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
588 )))
589 * (((
590 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
591 )))
592
593 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
594
595 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
596
597
598 === 2.5.2 Unix TimeStamp ===
599
600
601 LDS12-LB uses Unix TimeStamp format based on
602
603 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
604
605 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
606
607 Below is the converter example
608
609 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
610
611
612 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
613
614
615 === 2.5.3 Set Device Time ===
616
617
618 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
619
620 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
621
622 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
623
624
625 === 2.5.4 Poll sensor value ===
626
627
628 Users can poll sensor values based on timestamps. Below is the downlink command.
629
630 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
631 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
632 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
633 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
634
635 (((
636 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
637 )))
638
639 (((
640 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
641 )))
642
643 (((
644 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
645 )))
646
647 (((
648 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
649 )))
650
651
652 == 2.6 Frequency Plans ==
653
654
655 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
656
657 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
658
659
660 == 2.7 LiDAR ToF Measurement ==
661
662 === 2.7.1 Principle of Distance Measurement ===
663
664
665 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
666
667 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
668
669
670 === 2.7.2 Distance Measurement Characteristics ===
671
672
673 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
674
675 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
676
677
678 (((
679 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
680 )))
681
682 (((
683 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
684 )))
685
686 (((
687 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
688 )))
689
690
691 (((
692 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
693 )))
694
695 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
696
697 (((
698 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
699 )))
700
701 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
702
703 (((
704 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
705 )))
706
707
708 === 2.7.3 Notice of usage ===
709
710
711 Possible invalid /wrong reading for LiDAR ToF tech:
712
713 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
714 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
715 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
716 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
717
718 === 2.7.4  Reflectivity of different objects ===
719
720
721 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
722 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
723 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
724 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
725 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
726 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
727 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
728 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
729 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
730 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
731 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
732 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
733 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
734 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
735 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
736 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
737 |(% style="width:53px" %)15|(% style="width:229px" %)(((
738 Unpolished white metal surface
739 )))|(% style="width:93px" %)130%
740 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
741 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
742 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
743
744 = 3. Configure LDS12-LB =
745
746 == 3.1 Configure Methods ==
747
748
749 LDS12-LB supports below configure method:
750
751 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
752
753 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
754
755 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
756
757 == 3.2 General Commands ==
758
759
760 These commands are to configure:
761
762 * General system settings like: uplink interval.
763
764 * LoRaWAN protocol & radio related command.
765
766 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
767
768 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
769
770
771 == 3.3 Commands special design for LDS12-LB ==
772
773
774 These commands only valid for LDS12-LB, as below:
775
776
777 === 3.3.1 Set Transmit Interval Time ===
778
779
780 (((
781 Feature: Change LoRaWAN End Node Transmit Interval.
782 )))
783
784 (((
785 (% style="color:blue" %)**AT Command: AT+TDC**
786 )))
787
788 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
789 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
790 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
791 30000
792 OK
793 the interval is 30000ms = 30s
794 )))
795 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
796 OK
797 Set transmit interval to 60000ms = 60 seconds
798 )))
799
800 (((
801 (% style="color:blue" %)**Downlink Command: 0x01**
802 )))
803
804 (((
805 Format: Command Code (0x01) followed by 3 bytes time value.
806 )))
807
808 (((
809 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
810 )))
811
812 * (((
813 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
814 )))
815 * (((
816 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
817
818
819
820 )))
821
822 === 3.3.2 Set Interrupt Mode ===
823
824
825 Feature, Set Interrupt mode for pin of GPIO_EXTI.
826
827 When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
828
829 (% style="color:blue" %)**AT Command: AT+INTMOD**
830
831 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
832 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
833 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
834 0
835 OK
836 the mode is 0 =Disable Interrupt
837 )))
838 |(% style="width:154px" %)(((
839 AT+INTMOD=2
840
841 (default)
842 )))|(% style="width:196px" %)(((
843 Set Transmit Interval
844 0. (Disable Interrupt),
845 ~1. (Trigger by rising and falling edge)
846 2. (Trigger by falling edge)
847 3. (Trigger by rising edge)
848 )))|(% style="width:157px" %)OK
849
850 (% style="color:blue" %)**Downlink Command: 0x06**
851
852 Format: Command Code (0x06) followed by 3 bytes.
853
854 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
855
856 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
857
858 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
859
860 === 3.3.3  Set Power Output Duration ===
861
862 Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
863
864 ~1. first enable the power output to external sensor,
865
866 2. keep it on as per duration, read sensor value and construct uplink payload
867
868 3. final, close the power output.
869
870 (% style="color:blue" %)**AT Command: AT+3V3T**
871
872 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
873 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
874 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
875 OK
876 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
877 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
878 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
879
880 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
881 Format: Command Code (0x07) followed by 3 bytes.
882
883 The first byte is 01,the second and third bytes are the time to turn on.
884
885 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
886 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
887 * Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
888
889 = 4. Battery & Power Consumption =
890
891
892 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
893
894 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
895
896
897 = 5. OTA Firmware update =
898
899
900 (% class="wikigeneratedid" %)
901 User can change firmware LDS12-LB to:
902
903 * Change Frequency band/ region.
904
905 * Update with new features.
906
907 * Fix bugs.
908
909 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
910
911 Methods to Update Firmware:
912
913 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
914
915 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
916
917 = 6. FAQ =
918
919 == 6.1 What is the frequency plan for LDS12-LB? ==
920
921
922 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
923
924
925 = 7. Trouble Shooting =
926
927 == 7.1 AT Command input doesn't work ==
928
929
930 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
931
932
933 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
934
935
936 (((
937 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
938 )))
939
940 (((
941 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
942 )))
943
944
945 (((
946 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
947 )))
948
949 (((
950 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
951 )))
952
953
954 = 8. Order Info =
955
956
957 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
958
959 (% style="color:red" %)**XXX**(%%): **The default frequency band**
960
961 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
962
963 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
964
965 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
966
967 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
968
969 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
970
971 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
972
973 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
974
975 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
976
977 = 9. ​Packing Info =
978
979
980 (% style="color:#037691" %)**Package Includes**:
981
982 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
983
984 (% style="color:#037691" %)**Dimension and weight**:
985
986 * Device Size: cm
987
988 * Device Weight: g
989
990 * Package Size / pcs : cm
991
992 * Weight / pcs : g
993
994 = 10. Support =
995
996
997 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
998
999 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].