Version 111.2 by Xiaoling on 2023/11/10 08:54

Hide last authors
Ellie Zhang 26.1 1 (% style="text-align:center" %)
Xiaoling 111.2 2 [[image:image-20231110085342-2.png||height="481" width="481"]]
Edwin Chen 1.1 3
4
Xiaoling 67.2 5
Xiaoling 75.2 6
7
8
9
Xiaoling 111.2 10
kai 31.2 11 **Table of Contents:**
Ellie Zhang 30.1 12
Edwin Chen 1.1 13 {{toc/}}
14
15
16
17
18
19
kai 31.1 20 = 1. Introduction =
Edwin Chen 1.1 21
Xiaoling 80.2 22 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
Edwin Chen 1.1 23
Xiaoling 39.6 24
Xiaoling 80.3 25 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
Edwin Chen 1.1 26
Xiaoling 80.3 27 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
Edwin Chen 1.1 28
Xiaoling 80.2 29 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
Edwin Chen 1.1 30
Xiaoling 80.3 31 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
Xiaoling 62.4 32
Xiaoling 80.3 33 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
Edwin Chen 1.1 34
Xiaoling 80.3 35 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
Edwin Chen 1.1 36
Xiaoling 80.3 37 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
Xiaoling 75.3 38
Xiaoling 84.2 39 [[image:image-20230615152941-1.png||height="459" width="800"]]
Edwin Chen 1.1 40
Xiaoling 64.2 41
Edwin Chen 1.1 42 == 1.2 ​Features ==
43
Xiaoling 39.6 44
Edwin Chen 1.1 45 * LoRaWAN 1.0.3 Class A
Xiaoling 62.4 46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
Edwin Chen 1.1 47 * Ultra-low power consumption
Xiaoling 82.2 48 * Laser technology for distance detection
Xiaoling 109.12 49 * Measure Distance: 0.1m~~12m
50 * Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
Xiaoling 82.2 51 * Monitor Battery Level
Edwin Chen 1.1 52 * Support Bluetooth v5.1 and LoRaWAN remote configure
53 * Support wireless OTA update firmware
Xiaoling 70.5 54 * AT Commands to change parameters
Edwin Chen 1.1 55 * Downlink to change configure
56 * 8500mAh Battery for long term use
57
58 == 1.3 Specification ==
59
60
Xiaoling 70.28 61 (% style="color:#037691" %)**Common DC Characteristics:**
Xiaoling 70.6 62
Xiaoling 70.28 63 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 * Operating Temperature: -40 ~~ 85°C
65
Xiaoling 82.3 66 (% style="color:#037691" %)**Probe Specification:**
67
68 * Storage temperature:-20℃~~75℃
69 * Operating temperature : -20℃~~60℃
70 * Measure Distance:
71 ** 0.1m ~~ 12m @ 90% Reflectivity
72 ** 0.1m ~~ 4m @ 10% Reflectivity
Xiaoling 109.12 73 * Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
74 * Distance resolution : 1cm
Xiaoling 82.3 75 * Ambient light immunity : 70klux
76 * Enclosure rating : IP65
77 * Light source : LED
78 * Central wavelength : 850nm
79 * FOV : 3.6°
80 * Material of enclosure : ABS+PC
81 * Wire length : 25cm
82
Xiaoling 70.28 83 (% style="color:#037691" %)**LoRa Spec:**
84
85 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
86 * Max +22 dBm constant RF output vs.
87 * RX sensitivity: down to -139 dBm.
88 * Excellent blocking immunity
89
90 (% style="color:#037691" %)**Battery:**
91
92 * Li/SOCI2 un-chargeable battery
93 * Capacity: 8500mAh
94 * Self-Discharge: <1% / Year @ 25°C
95 * Max continuously current: 130mA
96 * Max boost current: 2A, 1 second
97
98 (% style="color:#037691" %)**Power Consumption**
99
100 * Sleep Mode: 5uA @ 3.3v
101 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
102
Xiaoling 82.4 103 == 1.4 Applications ==
Xiaoling 70.6 104
Xiaoling 79.15 105
Xiaoling 82.4 106 * Horizontal distance measurement
107 * Parking management system
108 * Object proximity and presence detection
109 * Intelligent trash can management system
110 * Robot obstacle avoidance
111 * Automatic control
112 * Sewer
Xiaoling 77.4 113
Xiaoling 79.18 114 (% style="display:none" %)
115
Xiaoling 82.4 116 == 1.5 Sleep mode and working mode ==
Xiaoling 77.4 117
118
Edwin Chen 1.1 119 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
120
121 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
122
123
Xiaoling 82.4 124 == 1.6 Button & LEDs ==
Edwin Chen 1.1 125
126
Edwin Chen 6.1 127 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
Edwin Chen 1.1 128
129
Xiaoling 14.13 130 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 90.12 131 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
Edwin Chen 1.1 132 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
133 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
134 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
135 )))
136 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
137 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
138 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
139 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
140 )))
Edwin Chen 6.1 141 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
Edwin Chen 1.1 142
Xiaoling 82.4 143 == 1.7 BLE connection ==
Edwin Chen 1.1 144
145
Xiaoling 80.4 146 LDS12-LB support BLE remote configure.
Edwin Chen 1.1 147
148 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
149
150 * Press button to send an uplink
151 * Press button to active device.
152 * Device Power on or reset.
153
154 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
155
156
Xiaoling 82.4 157 == 1.8 Pin Definitions ==
Edwin Chen 1.1 158
159
Saxer Lin 97.1 160 [[image:image-20230805144259-1.png||height="413" width="741"]]
Saxer Lin 43.1 161
Xiaoling 82.4 162 == 1.9 Mechanical ==
Xiaoling 67.4 163
Xiaoling 82.4 164
Edwin Chen 6.1 165 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
Edwin Chen 1.1 166
167
Edwin Chen 6.1 168 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
Edwin Chen 1.1 169
170
Edwin Chen 6.1 171 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
Edwin Chen 1.1 172
173
Xiaoling 70.20 174 (% style="color:blue" %)**Probe Mechanical:**
Xiaoling 70.10 175
176
Xiaoling 82.3 177 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
Xiaoling 79.2 178
179
Xiaoling 80.4 180 = 2. Configure LDS12-LB to connect to LoRaWAN network =
Xiaoling 67.4 181
Edwin Chen 1.1 182 == 2.1 How it works ==
183
184
Xiaoling 80.4 185 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 1.1 186
Xiaoling 64.2 187 (% style="display:none" %) (%%)
Edwin Chen 1.1 188
189 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
190
191
192 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
193
Xiaoling 62.5 194 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 1.1 195
Xiaoling 84.2 196 [[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
Edwin Chen 1.1 197
Xiaoling 64.2 198
Xiaoling 80.4 199 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
Edwin Chen 1.1 200
Xiaoling 80.4 201 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 1.1 202
Ellie Zhang 30.1 203 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 1.1 204
205
206 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
207
208
209 (% style="color:blue" %)**Register the device**
210
Xiaoling 14.13 211 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
Edwin Chen 1.1 212
213
214 (% style="color:blue" %)**Add APP EUI and DEV EUI**
215
Ellie Zhang 30.1 216 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
Edwin Chen 1.1 217
218
219 (% style="color:blue" %)**Add APP EUI in the application**
220
221
Ellie Zhang 30.1 222 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
Edwin Chen 1.1 223
224
225 (% style="color:blue" %)**Add APP KEY**
226
Ellie Zhang 30.1 227 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
Edwin Chen 1.1 228
229
Xiaoling 80.4 230 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
Edwin Chen 1.1 231
232
Xiaoling 80.4 233 Press the button for 5 seconds to activate the LDS12-LB.
Edwin Chen 6.1 234
Edwin Chen 1.1 235 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
236
237 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
238
239
Xiaoling 82.8 240 == 2.3 ​Uplink Payload ==
Edwin Chen 1.1 241
Saxer Lin 85.1 242 === 2.3.1 Device Status, FPORT~=5 ===
243
Xiaoling 90.2 244
Saxer Lin 85.1 245 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
246
247 The Payload format is as below.
248
Xiaoling 90.2 249 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 90.11 250 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
Saxer Lin 85.1 251 **Size(bytes)**
Xiaoling 90.11 252 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
Saxer Lin 85.1 253 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
254
255 Example parse in TTNv3
256
Saxer Lin 93.1 257 [[image:image-20230805103904-1.png||height="131" width="711"]]
258
Xiaoling 90.17 259 (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
Saxer Lin 85.1 260
Xiaoling 90.17 261 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
Saxer Lin 85.1 262
Xiaoling 90.17 263 (% style="color:blue" %)**Frequency Band**:
Saxer Lin 85.1 264
265 0x01: EU868
266
267 0x02: US915
268
269 0x03: IN865
270
271 0x04: AU915
272
273 0x05: KZ865
274
275 0x06: RU864
276
277 0x07: AS923
278
279 0x08: AS923-1
280
281 0x09: AS923-2
282
283 0x0a: AS923-3
284
285 0x0b: CN470
286
287 0x0c: EU433
288
289 0x0d: KR920
290
291 0x0e: MA869
292
Xiaoling 90.17 293 (% style="color:blue" %)**Sub-Band**:
Saxer Lin 85.1 294
295 AU915 and US915:value 0x00 ~~ 0x08
296
297 CN470: value 0x0B ~~ 0x0C
298
299 Other Bands: Always 0x00
300
Xiaoling 90.17 301 (% style="color:blue" %)**Battery Info**:
Saxer Lin 85.1 302
303 Check the battery voltage.
304
305 Ex1: 0x0B45 = 2885mV
306
307 Ex2: 0x0B49 = 2889mV
308
309
Saxer Lin 89.1 310 === 2.3.2 Uplink Payload, FPORT~=2 ===
Saxer Lin 85.1 311
Xiaoling 90.2 312
Xiaoling 62.5 313 (((
Saxer Lin 93.1 314 LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
Edwin Chen 1.1 315
Xiaoling 109.2 316 periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
Saxer Lin 93.1 317
318 Uplink Payload totals 11 bytes.
Xiaoling 62.5 319 )))
Edwin Chen 1.1 320
Xiaoling 90.7 321 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
322 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
Xiaoling 70.10 323 **Size(bytes)**
Xiaoling 90.9 324 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
Xiaoling 90.6 325 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
326 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
327 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
Xiaoling 90.14 328 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
Xiaoling 90.6 329 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
330 [[Message Type>>||anchor="HMessageType"]]
Xiaoling 82.4 331 )))
Edwin Chen 1.1 332
Saxer Lin 93.1 333 [[image:image-20230805104104-2.png||height="136" width="754"]]
Edwin Chen 1.1 334
335
Xiaoling 90.16 336 ==== (% style="color:blue" %)**Battery Info**(%%) ====
Edwin Chen 1.1 337
338
Xiaoling 80.4 339 Check the battery voltage for LDS12-LB.
Edwin Chen 1.1 340
Xiaoling 70.10 341 Ex1: 0x0B45 = 2885mV
Edwin Chen 1.1 342
Xiaoling 70.10 343 Ex2: 0x0B49 = 2889mV
Saxer Lin 46.1 344
Edwin Chen 1.1 345
Xiaoling 90.16 346 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
Xiaoling 67.7 347
348
Xiaoling 82.4 349 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
Edwin Chen 1.1 350
Xiaoling 14.22 351
Xiaoling 82.4 352 **Example**:
Edwin Chen 1.1 353
Xiaoling 82.4 354 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
Xiaoling 79.11 355
Xiaoling 82.4 356 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
Xiaoling 67.7 357
358
Xiaoling 90.16 359 ==== (% style="color:blue" %)**Distance**(%%) ====
Edwin Chen 10.1 360
Edwin Chen 1.1 361
Xiaoling 82.4 362 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
363
364
365 **Example**:
366
367 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
368
369
Xiaoling 90.16 370 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
Xiaoling 82.4 371
372
373 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
374
375
376 **Example**:
377
378 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
379
380 Customers can judge whether they need to adjust the environment based on the signal strength.
381
382
Saxer Lin 104.1 383 **1) When the sensor detects valid data:**
384
385 [[image:image-20230805155335-1.png||height="145" width="724"]]
386
387
388 **2) When the sensor detects invalid data:**
389
390 [[image:image-20230805155428-2.png||height="139" width="726"]]
391
392
393 **3) When the sensor is not connected:**
394
395 [[image:image-20230805155515-3.png||height="143" width="725"]]
396
397
Xiaoling 90.16 398 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
Xiaoling 82.4 399
400
Xiaoling 82.13 401 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
Xiaoling 82.4 402
Saxer Lin 107.1 403 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
Xiaoling 82.4 404
Xiaoling 70.10 405 **Example:**
Edwin Chen 1.1 406
Saxer Lin 106.1 407 If byte[0]&0x01=0x00 : Normal uplink packet.
Edwin Chen 1.1 408
Saxer Lin 106.1 409 If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
Edwin Chen 1.1 410
411
Xiaoling 90.16 412 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
Xiaoling 62.5 413
Edwin Chen 1.1 414
Xiaoling 82.4 415 Characterize the internal temperature value of the sensor.
Edwin Chen 1.1 416
Xiaoling 82.4 417 **Example: **
418 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
419 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
Edwin Chen 1.1 420
Xiaoling 39.5 421
Xiaoling 90.16 422 ==== (% style="color:blue" %)**Message Type**(%%) ====
Edwin Chen 1.1 423
424
Saxer Lin 55.1 425 (((
Xiaoling 82.4 426 For a normal uplink payload, the message type is always 0x01.
Saxer Lin 55.1 427 )))
428
429 (((
Xiaoling 82.4 430 Valid Message Type:
Saxer Lin 55.1 431 )))
Saxer Lin 46.1 432
Xiaoling 82.4 433 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
Xiaoling 82.7 434 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
Saxer Lin 108.1 435 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
436 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
Saxer Lin 46.1 437
Saxer Lin 99.1 438 [[image:image-20230805150315-4.png||height="233" width="723"]]
Xiaoling 90.19 439
Saxer Lin 97.1 440
Saxer Lin 99.1 441 === 2.3.3 Historical measuring distance, FPORT~=3 ===
Saxer Lin 97.1 442
Saxer Lin 99.1 443
Xiaoling 109.3 444 LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
445
Saxer Lin 107.1 446 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
Saxer Lin 97.1 447
Xiaoling 109.10 448 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Saxer Lin 99.1 449 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
450 **Size(bytes)**
Xiaoling 109.5 451 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
Saxer Lin 99.1 452 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
453 Reserve(0xFF)
454 )))|Distance|Distance signal strength|(% style="width:88px" %)(((
455 LiDAR temp
456 )))|(% style="width:85px" %)Unix TimeStamp
Saxer Lin 97.1 457
Saxer Lin 99.1 458 **Interrupt flag & Interrupt level:**
459
Xiaoling 109.10 460 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
Saxer Lin 99.1 461 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
462 **Size(bit)**
Xiaoling 109.7 463 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
Saxer Lin 99.1 464 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
465 Interrupt flag
466 )))
467
Saxer Lin 97.1 468 * (((
Xiaoling 109.8 469 Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
Saxer Lin 97.1 470 )))
471
472 For example, in the US915 band, the max payload for different DR is:
473
474 **a) DR0:** max is 11 bytes so one entry of data
475
476 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
477
478 **c) DR2:** total payload includes 11 entries of data
479
480 **d) DR3:** total payload includes 22 entries of data.
481
482 If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
483
484
485 **Downlink:**
486
487 0x31 64 CC 68 0C 64 CC 69 74 05
488
489 [[image:image-20230805144936-2.png||height="113" width="746"]]
490
491 **Uplink:**
492
493 43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
494
495
496 **Parsed Value:**
497
498 [DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
499
500
501 [360,176,30,High,True,2023-08-04 02:53:00],
502
503 [355,168,30,Low,False,2023-08-04 02:53:29],
504
505 [245,211,30,Low,False,2023-08-04 02:54:29],
506
507 [57,700,30,Low,False,2023-08-04 02:55:29],
508
509 [361,164,30,Low,True,2023-08-04 02:56:00],
510
511 [337,184,30,Low,False,2023-08-04 02:56:40],
512
513 [20,4458,30,Low,False,2023-08-04 02:57:40],
514
515 [362,173,30,Low,False,2023-08-04 02:58:53],
516
517
Saxer Lin 107.1 518 **History read from serial port:**
Saxer Lin 97.1 519
520 [[image:image-20230805145056-3.png]]
521
522
Saxer Lin 100.1 523 === 2.3.4 Decode payload in The Things Network ===
Xiaoling 82.8 524
525
Xiaoling 70.10 526 While using TTN network, you can add the payload format to decode the payload.
Edwin Chen 1.1 527
Xiaoling 82.10 528 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
Edwin Chen 1.1 529
530
Xiaoling 62.5 531 (((
Xiaoling 82.4 532 The payload decoder function for TTN is here:
Xiaoling 62.5 533 )))
Edwin Chen 1.1 534
Xiaoling 82.4 535 (((
536 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
537 )))
Edwin Chen 1.1 538
Xiaoling 82.4 539
Saxer Lin 93.1 540 == 2.4 ​Show Data in DataCake IoT Server ==
Edwin Chen 1.1 541
542
Xiaoling 62.5 543 (((
Xiaoling 70.10 544 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
Xiaoling 62.5 545 )))
Edwin Chen 1.1 546
547
Xiaoling 62.5 548 (((
Xiaoling 70.10 549 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
Xiaoling 62.5 550 )))
Edwin Chen 1.1 551
Xiaoling 62.5 552 (((
Xiaoling 70.10 553 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
Xiaoling 62.5 554 )))
Xiaoling 14.26 555
Saxer Lin 55.1 556
Xiaoling 70.10 557 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
Edwin Chen 1.1 558
559
Xiaoling 70.10 560 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
Edwin Chen 1.1 561
562
Xiaoling 70.10 563 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
Edwin Chen 1.1 564
Xiaoling 80.4 565 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
Edwin Chen 1.1 566
Xiaoling 70.10 567 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
Xiaoling 62.5 568
Edwin Chen 1.1 569
Xiaoling 70.10 570 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
Edwin Chen 1.1 571
Xiaoling 70.10 572 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
Edwin Chen 1.1 573
574
Saxer Lin 93.1 575 == 2.5 Datalog Feature ==
Edwin Chen 1.1 576
577
Xiaoling 80.4 578 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
Xiaoling 62.5 579
580
Saxer Lin 93.1 581 === 2.5.1 Ways to get datalog via LoRaWAN ===
Xiaoling 62.5 582
583
Xiaoling 80.4 584 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
Xiaoling 62.5 585
586 * (((
Xiaoling 80.4 587 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
Xiaoling 62.5 588 )))
589 * (((
Xiaoling 80.4 590 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
Xiaoling 62.5 591 )))
592
593 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
594
595 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
596
597
Saxer Lin 93.1 598 === 2.5.2 Unix TimeStamp ===
Xiaoling 62.5 599
600
Xiaoling 80.4 601 LDS12-LB uses Unix TimeStamp format based on
Xiaoling 62.5 602
603 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
604
605 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
606
607 Below is the converter example
608
609 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
610
611
612 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
613
614
Saxer Lin 93.1 615 === 2.5.3 Set Device Time ===
Xiaoling 62.5 616
617
618 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
619
Xiaoling 80.4 620 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
Xiaoling 62.5 621
622 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
623
624
Saxer Lin 93.1 625 === 2.5.4 Poll sensor value ===
Xiaoling 62.5 626
627
628 Users can poll sensor values based on timestamps. Below is the downlink command.
629
630 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
Xiaoling 90.16 631 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
Xiaoling 62.5 632 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
633 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
634
635 (((
636 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
637 )))
638
639 (((
Xiaoling 64.8 640 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
Xiaoling 62.5 641 )))
642
643 (((
644 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
645 )))
646
647 (((
Xiaoling 80.4 648 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
Xiaoling 62.5 649 )))
650
651
Saxer Lin 93.1 652 == 2.6 Frequency Plans ==
Edwin Chen 1.1 653
654
Xiaoling 80.4 655 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 1.1 656
657 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
658
659
Saxer Lin 93.1 660 == 2.7 LiDAR ToF Measurement ==
Xiaoling 82.4 661
Saxer Lin 93.1 662 === 2.7.1 Principle of Distance Measurement ===
Xiaoling 82.4 663
664
665 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
666
Xiaoling 82.15 667 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
Xiaoling 82.4 668
669
Saxer Lin 93.1 670 === 2.7.2 Distance Measurement Characteristics ===
Xiaoling 82.4 671
672
673 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
674
Xiaoling 82.15 675 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
Xiaoling 82.4 676
677
678 (((
679 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
680 )))
681
682 (((
683 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
684 )))
685
686 (((
687 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
688 )))
689
690
691 (((
692 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
693 )))
694
Xiaoling 82.15 695 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
Xiaoling 82.4 696
697 (((
698 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
699 )))
700
Xiaoling 82.15 701 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
Xiaoling 82.4 702
703 (((
704 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
705 )))
706
707
Saxer Lin 93.1 708 === 2.7.3 Notice of usage ===
Xiaoling 82.4 709
710
711 Possible invalid /wrong reading for LiDAR ToF tech:
712
713 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
714 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
715 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
716 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
717
Saxer Lin 93.1 718 === 2.7.4  Reflectivity of different objects ===
Xiaoling 90.19 719
Xiaoling 82.4 720
721 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
Xiaoling 82.15 722 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
Xiaoling 82.4 723 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
724 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
725 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
726 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
727 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
728 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
729 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
730 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
731 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
732 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
733 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
734 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
735 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
736 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
737 |(% style="width:53px" %)15|(% style="width:229px" %)(((
738 Unpolished white metal surface
739 )))|(% style="width:93px" %)130%
740 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
741 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
742 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
743
Xiaoling 80.4 744 = 3. Configure LDS12-LB =
Edwin Chen 1.1 745
kai 16.4 746 == 3.1 Configure Methods ==
Edwin Chen 1.1 747
748
Xiaoling 80.4 749 LDS12-LB supports below configure method:
Edwin Chen 1.1 750
751 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
Xiaoling 67.20 752
Edwin Chen 11.1 753 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
Xiaoling 67.20 754
Edwin Chen 1.1 755 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
756
757 == 3.2 General Commands ==
758
759
760 These commands are to configure:
761
762 * General system settings like: uplink interval.
Xiaoling 67.20 763
Edwin Chen 1.1 764 * LoRaWAN protocol & radio related command.
765
766 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
767
768 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
769
770
Xiaoling 80.4 771 == 3.3 Commands special design for LDS12-LB ==
Edwin Chen 1.1 772
773
Xiaoling 80.4 774 These commands only valid for LDS12-LB, as below:
Edwin Chen 1.1 775
776
777 === 3.3.1 Set Transmit Interval Time ===
778
779
Xiaoling 62.5 780 (((
Edwin Chen 1.1 781 Feature: Change LoRaWAN End Node Transmit Interval.
Xiaoling 62.5 782 )))
783
784 (((
Edwin Chen 1.1 785 (% style="color:blue" %)**AT Command: AT+TDC**
Xiaoling 62.5 786 )))
Edwin Chen 1.1 787
Xiaoling 14.34 788 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 82.16 789 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
Edwin Chen 1.1 790 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
791 30000
792 OK
793 the interval is 30000ms = 30s
794 )))
795 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
796 OK
797 Set transmit interval to 60000ms = 60 seconds
798 )))
799
Xiaoling 62.5 800 (((
Edwin Chen 1.1 801 (% style="color:blue" %)**Downlink Command: 0x01**
Xiaoling 62.5 802 )))
Edwin Chen 1.1 803
Xiaoling 62.5 804 (((
Edwin Chen 1.1 805 Format: Command Code (0x01) followed by 3 bytes time value.
Xiaoling 62.5 806 )))
Edwin Chen 1.1 807
Xiaoling 62.5 808 (((
Edwin Chen 1.1 809 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
Xiaoling 62.5 810 )))
Edwin Chen 1.1 811
Xiaoling 62.5 812 * (((
813 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
814 )))
815 * (((
Xiaoling 73.8 816 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
Xiaoling 82.22 817
818
819
Xiaoling 82.5 820 )))
Xiaoling 79.19 821
Xiaoling 70.11 822 === 3.3.2 Set Interrupt Mode ===
Xiaoling 62.5 823
824
Saxer Lin 109.1 825 Feature, Set Interrupt mode for pin of GPIO_EXTI.
Edwin Chen 1.1 826
Saxer Lin 107.1 827 When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
Saxer Lin 46.1 828
Edwin Chen 1.1 829 (% style="color:blue" %)**AT Command: AT+INTMOD**
830
Xiaoling 14.34 831 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 82.16 832 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Edwin Chen 1.1 833 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
834 0
835 OK
836 the mode is 0 =Disable Interrupt
837 )))
Saxer Lin 107.1 838 |(% style="width:154px" %)(((
839 AT+INTMOD=2
840
841 (default)
842 )))|(% style="width:196px" %)(((
Edwin Chen 1.1 843 Set Transmit Interval
844 0. (Disable Interrupt),
845 ~1. (Trigger by rising and falling edge)
846 2. (Trigger by falling edge)
847 3. (Trigger by rising edge)
848 )))|(% style="width:157px" %)OK
849
850 (% style="color:blue" %)**Downlink Command: 0x06**
851
852 Format: Command Code (0x06) followed by 3 bytes.
853
854 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
855
856 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
Xiaoling 62.6 857
Edwin Chen 1.1 858 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
859
Saxer Lin 90.1 860 === 3.3.3  Set Power Output Duration ===
861
Saxer Lin 97.1 862 Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
Saxer Lin 90.1 863
864 ~1. first enable the power output to external sensor,
865
866 2. keep it on as per duration, read sensor value and construct uplink payload
867
868 3. final, close the power output.
869
870 (% style="color:blue" %)**AT Command: AT+3V3T**
871
872 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
873 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
874 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
875 OK
876 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
877 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
Saxer Lin 97.1 878 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
Saxer Lin 90.1 879
880 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
881 Format: Command Code (0x07) followed by 3 bytes.
882
883 The first byte is 01,the second and third bytes are the time to turn on.
884
885 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
886 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
Saxer Lin 97.1 887 * Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
Saxer Lin 90.1 888
kai 16.4 889 = 4. Battery & Power Consumption =
Xiaoling 14.45 890
Edwin Chen 1.1 891
Xiaoling 80.4 892 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 1.1 893
894 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
895
896
kai 16.4 897 = 5. OTA Firmware update =
Edwin Chen 1.1 898
899
Edwin Chen 13.1 900 (% class="wikigeneratedid" %)
Xiaoling 80.4 901 User can change firmware LDS12-LB to:
Edwin Chen 1.1 902
Edwin Chen 13.1 903 * Change Frequency band/ region.
Xiaoling 62.7 904
Edwin Chen 13.1 905 * Update with new features.
Xiaoling 62.7 906
Edwin Chen 13.1 907 * Fix bugs.
Edwin Chen 1.1 908
Xiaoling 82.20 909 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
Edwin Chen 1.1 910
kai 31.1 911 Methods to Update Firmware:
Edwin Chen 1.1 912
Xiaoling 79.15 913 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
Xiaoling 62.7 914
Xiaoling 70.18 915 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 1.1 916
kai 31.1 917 = 6. FAQ =
Edwin Chen 1.1 918
Xiaoling 80.4 919 == 6.1 What is the frequency plan for LDS12-LB? ==
Edwin Chen 1.1 920
Xiaoling 62.7 921
Xiaoling 80.4 922 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
Xiaoling 62.7 923
Edwin Chen 1.1 924
Xiaoling 80.4 925 = 7. Trouble Shooting =
Edwin Chen 1.1 926
Xiaoling 80.4 927 == 7.1 AT Command input doesn't work ==
Edwin Chen 1.1 928
Xiaoling 70.14 929
Xiaoling 80.4 930 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
Xiaoling 70.14 931
932
Xiaoling 80.4 933 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
Xiaoling 70.14 934
935
Xiaoling 80.4 936 (((
Xiaoling 82.21 937 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
Xiaoling 80.4 938 )))
Xiaoling 70.14 939
Xiaoling 80.4 940 (((
Xiaoling 82.21 941 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
Xiaoling 80.4 942 )))
Xiaoling 70.14 943
944
Xiaoling 80.4 945 (((
946 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
947 )))
Xiaoling 70.14 948
Xiaoling 79.7 949 (((
Xiaoling 82.21 950 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
Xiaoling 79.7 951 )))
Xiaoling 70.14 952
953
954 = 8. Order Info =
955
956
Xiaoling 80.4 957 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
Xiaoling 70.14 958
Xiaoling 70.12 959 (% style="color:red" %)**XXX**(%%): **The default frequency band**
Edwin Chen 1.1 960
Ellie Zhang 38.1 961 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
Edwin Chen 1.1 962
Ellie Zhang 38.1 963 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
Edwin Chen 1.1 964
Ellie Zhang 38.1 965 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
Edwin Chen 1.1 966
Ellie Zhang 38.1 967 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
Edwin Chen 1.1 968
Ellie Zhang 38.1 969 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
Edwin Chen 1.1 970
Ellie Zhang 38.1 971 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
Edwin Chen 1.1 972
Ellie Zhang 38.1 973 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
Edwin Chen 1.1 974
Ellie Zhang 38.1 975 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
Edwin Chen 1.1 976
Xiaoling 70.14 977 = 9. ​Packing Info =
Xiaoling 67.11 978
979
Ellie Zhang 39.1 980 (% style="color:#037691" %)**Package Includes**:
Edwin Chen 1.1 981
Xiaoling 80.4 982 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
Edwin Chen 1.1 983
Ellie Zhang 39.1 984 (% style="color:#037691" %)**Dimension and weight**:
Edwin Chen 1.1 985
kai 31.1 986 * Device Size: cm
Edwin Chen 1.1 987
kai 31.1 988 * Device Weight: g
Edwin Chen 1.1 989
kai 31.1 990 * Package Size / pcs : cm
Edwin Chen 1.1 991
kai 31.1 992 * Weight / pcs : g
Edwin Chen 1.1 993
Xiaoling 70.14 994 = 10. Support =
995
996
kai 31.1 997 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 39.6 998
999 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].