Version 109.15 by Xiaoling on 2023/11/10 08:52

Hide last authors
Ellie Zhang 26.1 1 (% style="text-align:center" %)
Xiaoling 80.2 2 [[image:image-20230614153353-1.png]]
Edwin Chen 1.1 3
4
Xiaoling 67.2 5
Xiaoling 75.2 6
7
8
9
kai 31.2 10 **Table of Contents:**
Ellie Zhang 30.1 11
Edwin Chen 1.1 12 {{toc/}}
13
14
15
16
17
18
kai 31.1 19 = 1. Introduction =
Edwin Chen 1.1 20
Xiaoling 80.2 21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
Edwin Chen 1.1 22
Xiaoling 39.6 23
Xiaoling 80.3 24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
Edwin Chen 1.1 25
Xiaoling 80.3 26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
Edwin Chen 1.1 27
Xiaoling 80.2 28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
Edwin Chen 1.1 29
Xiaoling 80.3 30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
Xiaoling 62.4 31
Xiaoling 80.3 32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
Edwin Chen 1.1 33
Xiaoling 80.3 34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
Edwin Chen 1.1 35
Xiaoling 80.3 36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
Xiaoling 75.3 37
Xiaoling 84.2 38 [[image:image-20230615152941-1.png||height="459" width="800"]]
Edwin Chen 1.1 39
Xiaoling 64.2 40
Edwin Chen 1.1 41 == 1.2 ​Features ==
42
Xiaoling 39.6 43
Edwin Chen 1.1 44 * LoRaWAN 1.0.3 Class A
Xiaoling 62.4 45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
Edwin Chen 1.1 46 * Ultra-low power consumption
Xiaoling 82.2 47 * Laser technology for distance detection
Xiaoling 109.12 48 * Measure Distance: 0.1m~~12m
49 * Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
Xiaoling 82.2 50 * Monitor Battery Level
Edwin Chen 1.1 51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
Xiaoling 70.5 53 * AT Commands to change parameters
Edwin Chen 1.1 54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57 == 1.3 Specification ==
58
59
Xiaoling 70.28 60 (% style="color:#037691" %)**Common DC Characteristics:**
Xiaoling 70.6 61
Xiaoling 70.28 62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 * Operating Temperature: -40 ~~ 85°C
64
Xiaoling 82.3 65 (% style="color:#037691" %)**Probe Specification:**
66
67 * Storage temperature:-20℃~~75℃
68 * Operating temperature : -20℃~~60℃
69 * Measure Distance:
70 ** 0.1m ~~ 12m @ 90% Reflectivity
71 ** 0.1m ~~ 4m @ 10% Reflectivity
Xiaoling 109.12 72 * Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
73 * Distance resolution : 1cm
Xiaoling 82.3 74 * Ambient light immunity : 70klux
75 * Enclosure rating : IP65
76 * Light source : LED
77 * Central wavelength : 850nm
78 * FOV : 3.6°
79 * Material of enclosure : ABS+PC
80 * Wire length : 25cm
81
Xiaoling 70.28 82 (% style="color:#037691" %)**LoRa Spec:**
83
84 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 * Max +22 dBm constant RF output vs.
86 * RX sensitivity: down to -139 dBm.
87 * Excellent blocking immunity
88
89 (% style="color:#037691" %)**Battery:**
90
91 * Li/SOCI2 un-chargeable battery
92 * Capacity: 8500mAh
93 * Self-Discharge: <1% / Year @ 25°C
94 * Max continuously current: 130mA
95 * Max boost current: 2A, 1 second
96
97 (% style="color:#037691" %)**Power Consumption**
98
99 * Sleep Mode: 5uA @ 3.3v
100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101
Xiaoling 82.4 102 == 1.4 Applications ==
Xiaoling 70.6 103
Xiaoling 79.15 104
Xiaoling 82.4 105 * Horizontal distance measurement
106 * Parking management system
107 * Object proximity and presence detection
108 * Intelligent trash can management system
109 * Robot obstacle avoidance
110 * Automatic control
111 * Sewer
Xiaoling 77.4 112
Xiaoling 79.18 113 (% style="display:none" %)
114
Xiaoling 82.4 115 == 1.5 Sleep mode and working mode ==
Xiaoling 77.4 116
117
Edwin Chen 1.1 118 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119
120 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121
122
Xiaoling 82.4 123 == 1.6 Button & LEDs ==
Edwin Chen 1.1 124
125
Edwin Chen 6.1 126 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
Edwin Chen 1.1 127
128
Xiaoling 14.13 129 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 90.12 130 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
Edwin Chen 1.1 131 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 )))
135 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 )))
Edwin Chen 6.1 140 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
Edwin Chen 1.1 141
Xiaoling 82.4 142 == 1.7 BLE connection ==
Edwin Chen 1.1 143
144
Xiaoling 80.4 145 LDS12-LB support BLE remote configure.
Edwin Chen 1.1 146
147 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148
149 * Press button to send an uplink
150 * Press button to active device.
151 * Device Power on or reset.
152
153 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154
155
Xiaoling 82.4 156 == 1.8 Pin Definitions ==
Edwin Chen 1.1 157
158
Saxer Lin 97.1 159 [[image:image-20230805144259-1.png||height="413" width="741"]]
Saxer Lin 43.1 160
Xiaoling 82.4 161 == 1.9 Mechanical ==
Xiaoling 67.4 162
Xiaoling 82.4 163
Edwin Chen 6.1 164 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
Edwin Chen 1.1 165
166
Edwin Chen 6.1 167 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
Edwin Chen 1.1 168
169
Edwin Chen 6.1 170 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
Edwin Chen 1.1 171
172
Xiaoling 70.20 173 (% style="color:blue" %)**Probe Mechanical:**
Xiaoling 70.10 174
175
Xiaoling 82.3 176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
Xiaoling 79.2 177
178
Xiaoling 80.4 179 = 2. Configure LDS12-LB to connect to LoRaWAN network =
Xiaoling 67.4 180
Edwin Chen 1.1 181 == 2.1 How it works ==
182
183
Xiaoling 80.4 184 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 1.1 185
Xiaoling 64.2 186 (% style="display:none" %) (%%)
Edwin Chen 1.1 187
188 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
189
190
191 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
192
Xiaoling 62.5 193 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 1.1 194
Xiaoling 84.2 195 [[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
Edwin Chen 1.1 196
Xiaoling 64.2 197
Xiaoling 80.4 198 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
Edwin Chen 1.1 199
Xiaoling 80.4 200 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 1.1 201
Ellie Zhang 30.1 202 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 1.1 203
204
205 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
206
207
208 (% style="color:blue" %)**Register the device**
209
Xiaoling 14.13 210 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
Edwin Chen 1.1 211
212
213 (% style="color:blue" %)**Add APP EUI and DEV EUI**
214
Ellie Zhang 30.1 215 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
Edwin Chen 1.1 216
217
218 (% style="color:blue" %)**Add APP EUI in the application**
219
220
Ellie Zhang 30.1 221 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
Edwin Chen 1.1 222
223
224 (% style="color:blue" %)**Add APP KEY**
225
Ellie Zhang 30.1 226 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
Edwin Chen 1.1 227
228
Xiaoling 80.4 229 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
Edwin Chen 1.1 230
231
Xiaoling 80.4 232 Press the button for 5 seconds to activate the LDS12-LB.
Edwin Chen 6.1 233
Edwin Chen 1.1 234 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
235
236 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
237
238
Xiaoling 82.8 239 == 2.3 ​Uplink Payload ==
Edwin Chen 1.1 240
Saxer Lin 85.1 241 === 2.3.1 Device Status, FPORT~=5 ===
242
Xiaoling 90.2 243
Saxer Lin 85.1 244 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
245
246 The Payload format is as below.
247
Xiaoling 90.2 248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 90.11 249 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
Saxer Lin 85.1 250 **Size(bytes)**
Xiaoling 90.11 251 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
Saxer Lin 85.1 252 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
253
254 Example parse in TTNv3
255
Saxer Lin 93.1 256 [[image:image-20230805103904-1.png||height="131" width="711"]]
257
Xiaoling 90.17 258 (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
Saxer Lin 85.1 259
Xiaoling 90.17 260 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
Saxer Lin 85.1 261
Xiaoling 90.17 262 (% style="color:blue" %)**Frequency Band**:
Saxer Lin 85.1 263
264 0x01: EU868
265
266 0x02: US915
267
268 0x03: IN865
269
270 0x04: AU915
271
272 0x05: KZ865
273
274 0x06: RU864
275
276 0x07: AS923
277
278 0x08: AS923-1
279
280 0x09: AS923-2
281
282 0x0a: AS923-3
283
284 0x0b: CN470
285
286 0x0c: EU433
287
288 0x0d: KR920
289
290 0x0e: MA869
291
Xiaoling 90.17 292 (% style="color:blue" %)**Sub-Band**:
Saxer Lin 85.1 293
294 AU915 and US915:value 0x00 ~~ 0x08
295
296 CN470: value 0x0B ~~ 0x0C
297
298 Other Bands: Always 0x00
299
Xiaoling 90.17 300 (% style="color:blue" %)**Battery Info**:
Saxer Lin 85.1 301
302 Check the battery voltage.
303
304 Ex1: 0x0B45 = 2885mV
305
306 Ex2: 0x0B49 = 2889mV
307
308
Saxer Lin 89.1 309 === 2.3.2 Uplink Payload, FPORT~=2 ===
Saxer Lin 85.1 310
Xiaoling 90.2 311
Xiaoling 62.5 312 (((
Saxer Lin 93.1 313 LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
Edwin Chen 1.1 314
Xiaoling 109.2 315 periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
Saxer Lin 93.1 316
317 Uplink Payload totals 11 bytes.
Xiaoling 62.5 318 )))
Edwin Chen 1.1 319
Xiaoling 90.7 320 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
321 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
Xiaoling 70.10 322 **Size(bytes)**
Xiaoling 90.9 323 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
Xiaoling 90.6 324 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
325 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
326 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
Xiaoling 90.14 327 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
Xiaoling 90.6 328 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
329 [[Message Type>>||anchor="HMessageType"]]
Xiaoling 82.4 330 )))
Edwin Chen 1.1 331
Saxer Lin 93.1 332 [[image:image-20230805104104-2.png||height="136" width="754"]]
Edwin Chen 1.1 333
334
Xiaoling 90.16 335 ==== (% style="color:blue" %)**Battery Info**(%%) ====
Edwin Chen 1.1 336
337
Xiaoling 80.4 338 Check the battery voltage for LDS12-LB.
Edwin Chen 1.1 339
Xiaoling 70.10 340 Ex1: 0x0B45 = 2885mV
Edwin Chen 1.1 341
Xiaoling 70.10 342 Ex2: 0x0B49 = 2889mV
Saxer Lin 46.1 343
Edwin Chen 1.1 344
Xiaoling 90.16 345 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
Xiaoling 67.7 346
347
Xiaoling 82.4 348 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
Edwin Chen 1.1 349
Xiaoling 14.22 350
Xiaoling 82.4 351 **Example**:
Edwin Chen 1.1 352
Xiaoling 82.4 353 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
Xiaoling 79.11 354
Xiaoling 82.4 355 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
Xiaoling 67.7 356
357
Xiaoling 90.16 358 ==== (% style="color:blue" %)**Distance**(%%) ====
Edwin Chen 10.1 359
Edwin Chen 1.1 360
Xiaoling 82.4 361 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
362
363
364 **Example**:
365
366 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
367
368
Xiaoling 90.16 369 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
Xiaoling 82.4 370
371
372 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
373
374
375 **Example**:
376
377 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
378
379 Customers can judge whether they need to adjust the environment based on the signal strength.
380
381
Saxer Lin 104.1 382 **1) When the sensor detects valid data:**
383
384 [[image:image-20230805155335-1.png||height="145" width="724"]]
385
386
387 **2) When the sensor detects invalid data:**
388
389 [[image:image-20230805155428-2.png||height="139" width="726"]]
390
391
392 **3) When the sensor is not connected:**
393
394 [[image:image-20230805155515-3.png||height="143" width="725"]]
395
396
Xiaoling 90.16 397 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
Xiaoling 82.4 398
399
Xiaoling 82.13 400 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
Xiaoling 82.4 401
Saxer Lin 107.1 402 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
Xiaoling 82.4 403
Xiaoling 70.10 404 **Example:**
Edwin Chen 1.1 405
Saxer Lin 106.1 406 If byte[0]&0x01=0x00 : Normal uplink packet.
Edwin Chen 1.1 407
Saxer Lin 106.1 408 If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
Edwin Chen 1.1 409
410
Xiaoling 90.16 411 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
Xiaoling 62.5 412
Edwin Chen 1.1 413
Xiaoling 82.4 414 Characterize the internal temperature value of the sensor.
Edwin Chen 1.1 415
Xiaoling 82.4 416 **Example: **
417 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
418 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
Edwin Chen 1.1 419
Xiaoling 39.5 420
Xiaoling 90.16 421 ==== (% style="color:blue" %)**Message Type**(%%) ====
Edwin Chen 1.1 422
423
Saxer Lin 55.1 424 (((
Xiaoling 82.4 425 For a normal uplink payload, the message type is always 0x01.
Saxer Lin 55.1 426 )))
427
428 (((
Xiaoling 82.4 429 Valid Message Type:
Saxer Lin 55.1 430 )))
Saxer Lin 46.1 431
Xiaoling 82.4 432 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
Xiaoling 82.7 433 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
Saxer Lin 108.1 434 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
435 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
Saxer Lin 46.1 436
Saxer Lin 99.1 437 [[image:image-20230805150315-4.png||height="233" width="723"]]
Xiaoling 90.19 438
Saxer Lin 97.1 439
Saxer Lin 99.1 440 === 2.3.3 Historical measuring distance, FPORT~=3 ===
Saxer Lin 97.1 441
Saxer Lin 99.1 442
Xiaoling 109.3 443 LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
444
Saxer Lin 107.1 445 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
Saxer Lin 97.1 446
Xiaoling 109.10 447 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Saxer Lin 99.1 448 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
449 **Size(bytes)**
Xiaoling 109.5 450 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
Saxer Lin 99.1 451 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
452 Reserve(0xFF)
453 )))|Distance|Distance signal strength|(% style="width:88px" %)(((
454 LiDAR temp
455 )))|(% style="width:85px" %)Unix TimeStamp
Saxer Lin 97.1 456
Saxer Lin 99.1 457 **Interrupt flag & Interrupt level:**
458
Xiaoling 109.10 459 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
Saxer Lin 99.1 460 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
461 **Size(bit)**
Xiaoling 109.7 462 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
Saxer Lin 99.1 463 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
464 Interrupt flag
465 )))
466
Saxer Lin 97.1 467 * (((
Xiaoling 109.8 468 Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
Saxer Lin 97.1 469 )))
470
471 For example, in the US915 band, the max payload for different DR is:
472
473 **a) DR0:** max is 11 bytes so one entry of data
474
475 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
476
477 **c) DR2:** total payload includes 11 entries of data
478
479 **d) DR3:** total payload includes 22 entries of data.
480
481 If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
482
483
484 **Downlink:**
485
486 0x31 64 CC 68 0C 64 CC 69 74 05
487
488 [[image:image-20230805144936-2.png||height="113" width="746"]]
489
490 **Uplink:**
491
492 43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
493
494
495 **Parsed Value:**
496
497 [DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
498
499
500 [360,176,30,High,True,2023-08-04 02:53:00],
501
502 [355,168,30,Low,False,2023-08-04 02:53:29],
503
504 [245,211,30,Low,False,2023-08-04 02:54:29],
505
506 [57,700,30,Low,False,2023-08-04 02:55:29],
507
508 [361,164,30,Low,True,2023-08-04 02:56:00],
509
510 [337,184,30,Low,False,2023-08-04 02:56:40],
511
512 [20,4458,30,Low,False,2023-08-04 02:57:40],
513
514 [362,173,30,Low,False,2023-08-04 02:58:53],
515
516
Saxer Lin 107.1 517 **History read from serial port:**
Saxer Lin 97.1 518
519 [[image:image-20230805145056-3.png]]
520
521
Saxer Lin 100.1 522 === 2.3.4 Decode payload in The Things Network ===
Xiaoling 82.8 523
524
Xiaoling 70.10 525 While using TTN network, you can add the payload format to decode the payload.
Edwin Chen 1.1 526
Xiaoling 82.10 527 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
Edwin Chen 1.1 528
529
Xiaoling 62.5 530 (((
Xiaoling 82.4 531 The payload decoder function for TTN is here:
Xiaoling 62.5 532 )))
Edwin Chen 1.1 533
Xiaoling 82.4 534 (((
535 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
536 )))
Edwin Chen 1.1 537
Xiaoling 82.4 538
Saxer Lin 93.1 539 == 2.4 ​Show Data in DataCake IoT Server ==
Edwin Chen 1.1 540
541
Xiaoling 62.5 542 (((
Xiaoling 70.10 543 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
Xiaoling 62.5 544 )))
Edwin Chen 1.1 545
546
Xiaoling 62.5 547 (((
Xiaoling 70.10 548 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
Xiaoling 62.5 549 )))
Edwin Chen 1.1 550
Xiaoling 62.5 551 (((
Xiaoling 70.10 552 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
Xiaoling 62.5 553 )))
Xiaoling 14.26 554
Saxer Lin 55.1 555
Xiaoling 70.10 556 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
Edwin Chen 1.1 557
558
Xiaoling 70.10 559 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
Edwin Chen 1.1 560
561
Xiaoling 70.10 562 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
Edwin Chen 1.1 563
Xiaoling 80.4 564 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
Edwin Chen 1.1 565
Xiaoling 70.10 566 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
Xiaoling 62.5 567
Edwin Chen 1.1 568
Xiaoling 70.10 569 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
Edwin Chen 1.1 570
Xiaoling 70.10 571 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
Edwin Chen 1.1 572
573
Saxer Lin 93.1 574 == 2.5 Datalog Feature ==
Edwin Chen 1.1 575
576
Xiaoling 80.4 577 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
Xiaoling 62.5 578
579
Saxer Lin 93.1 580 === 2.5.1 Ways to get datalog via LoRaWAN ===
Xiaoling 62.5 581
582
Xiaoling 80.4 583 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
Xiaoling 62.5 584
585 * (((
Xiaoling 80.4 586 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
Xiaoling 62.5 587 )))
588 * (((
Xiaoling 80.4 589 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
Xiaoling 62.5 590 )))
591
592 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
593
594 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
595
596
Saxer Lin 93.1 597 === 2.5.2 Unix TimeStamp ===
Xiaoling 62.5 598
599
Xiaoling 80.4 600 LDS12-LB uses Unix TimeStamp format based on
Xiaoling 62.5 601
602 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
603
604 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
605
606 Below is the converter example
607
608 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
609
610
611 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
612
613
Saxer Lin 93.1 614 === 2.5.3 Set Device Time ===
Xiaoling 62.5 615
616
617 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
618
Xiaoling 80.4 619 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
Xiaoling 62.5 620
621 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
622
623
Saxer Lin 93.1 624 === 2.5.4 Poll sensor value ===
Xiaoling 62.5 625
626
627 Users can poll sensor values based on timestamps. Below is the downlink command.
628
629 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
Xiaoling 90.16 630 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
Xiaoling 62.5 631 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
632 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
633
634 (((
635 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
636 )))
637
638 (((
Xiaoling 64.8 639 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
Xiaoling 62.5 640 )))
641
642 (((
643 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
644 )))
645
646 (((
Xiaoling 80.4 647 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
Xiaoling 62.5 648 )))
649
650
Saxer Lin 93.1 651 == 2.6 Frequency Plans ==
Edwin Chen 1.1 652
653
Xiaoling 80.4 654 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 1.1 655
656 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
657
658
Saxer Lin 93.1 659 == 2.7 LiDAR ToF Measurement ==
Xiaoling 82.4 660
Saxer Lin 93.1 661 === 2.7.1 Principle of Distance Measurement ===
Xiaoling 82.4 662
663
664 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
665
Xiaoling 82.15 666 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
Xiaoling 82.4 667
668
Saxer Lin 93.1 669 === 2.7.2 Distance Measurement Characteristics ===
Xiaoling 82.4 670
671
672 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
673
Xiaoling 82.15 674 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
Xiaoling 82.4 675
676
677 (((
678 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
679 )))
680
681 (((
682 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
683 )))
684
685 (((
686 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
687 )))
688
689
690 (((
691 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
692 )))
693
Xiaoling 82.15 694 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
Xiaoling 82.4 695
696 (((
697 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
698 )))
699
Xiaoling 82.15 700 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
Xiaoling 82.4 701
702 (((
703 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
704 )))
705
706
Saxer Lin 93.1 707 === 2.7.3 Notice of usage ===
Xiaoling 82.4 708
709
710 Possible invalid /wrong reading for LiDAR ToF tech:
711
712 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
713 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
714 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
715 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
716
Saxer Lin 93.1 717 === 2.7.4  Reflectivity of different objects ===
Xiaoling 90.19 718
Xiaoling 82.4 719
720 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
Xiaoling 82.15 721 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
Xiaoling 82.4 722 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
723 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
724 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
725 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
726 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
727 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
728 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
729 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
730 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
731 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
732 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
733 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
734 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
735 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
736 |(% style="width:53px" %)15|(% style="width:229px" %)(((
737 Unpolished white metal surface
738 )))|(% style="width:93px" %)130%
739 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
740 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
741 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
742
Xiaoling 80.4 743 = 3. Configure LDS12-LB =
Edwin Chen 1.1 744
kai 16.4 745 == 3.1 Configure Methods ==
Edwin Chen 1.1 746
747
Xiaoling 80.4 748 LDS12-LB supports below configure method:
Edwin Chen 1.1 749
750 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
Xiaoling 67.20 751
Edwin Chen 11.1 752 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
Xiaoling 67.20 753
Edwin Chen 1.1 754 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
755
756 == 3.2 General Commands ==
757
758
759 These commands are to configure:
760
761 * General system settings like: uplink interval.
Xiaoling 67.20 762
Edwin Chen 1.1 763 * LoRaWAN protocol & radio related command.
764
765 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
766
767 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
768
769
Xiaoling 80.4 770 == 3.3 Commands special design for LDS12-LB ==
Edwin Chen 1.1 771
772
Xiaoling 80.4 773 These commands only valid for LDS12-LB, as below:
Edwin Chen 1.1 774
775
776 === 3.3.1 Set Transmit Interval Time ===
777
778
Xiaoling 62.5 779 (((
Edwin Chen 1.1 780 Feature: Change LoRaWAN End Node Transmit Interval.
Xiaoling 62.5 781 )))
782
783 (((
Edwin Chen 1.1 784 (% style="color:blue" %)**AT Command: AT+TDC**
Xiaoling 62.5 785 )))
Edwin Chen 1.1 786
Xiaoling 14.34 787 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 82.16 788 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
Edwin Chen 1.1 789 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
790 30000
791 OK
792 the interval is 30000ms = 30s
793 )))
794 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
795 OK
796 Set transmit interval to 60000ms = 60 seconds
797 )))
798
Xiaoling 62.5 799 (((
Edwin Chen 1.1 800 (% style="color:blue" %)**Downlink Command: 0x01**
Xiaoling 62.5 801 )))
Edwin Chen 1.1 802
Xiaoling 62.5 803 (((
Edwin Chen 1.1 804 Format: Command Code (0x01) followed by 3 bytes time value.
Xiaoling 62.5 805 )))
Edwin Chen 1.1 806
Xiaoling 62.5 807 (((
Edwin Chen 1.1 808 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
Xiaoling 62.5 809 )))
Edwin Chen 1.1 810
Xiaoling 62.5 811 * (((
812 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
813 )))
814 * (((
Xiaoling 73.8 815 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
Xiaoling 82.22 816
817
818
Xiaoling 82.5 819 )))
Xiaoling 79.19 820
Xiaoling 70.11 821 === 3.3.2 Set Interrupt Mode ===
Xiaoling 62.5 822
823
Saxer Lin 109.1 824 Feature, Set Interrupt mode for pin of GPIO_EXTI.
Edwin Chen 1.1 825
Saxer Lin 107.1 826 When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
Saxer Lin 46.1 827
Edwin Chen 1.1 828 (% style="color:blue" %)**AT Command: AT+INTMOD**
829
Xiaoling 14.34 830 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 82.16 831 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Edwin Chen 1.1 832 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
833 0
834 OK
835 the mode is 0 =Disable Interrupt
836 )))
Saxer Lin 107.1 837 |(% style="width:154px" %)(((
838 AT+INTMOD=2
839
840 (default)
841 )))|(% style="width:196px" %)(((
Edwin Chen 1.1 842 Set Transmit Interval
843 0. (Disable Interrupt),
844 ~1. (Trigger by rising and falling edge)
845 2. (Trigger by falling edge)
846 3. (Trigger by rising edge)
847 )))|(% style="width:157px" %)OK
848
849 (% style="color:blue" %)**Downlink Command: 0x06**
850
851 Format: Command Code (0x06) followed by 3 bytes.
852
853 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
854
855 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
Xiaoling 62.6 856
Edwin Chen 1.1 857 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
858
Saxer Lin 90.1 859 === 3.3.3  Set Power Output Duration ===
860
Saxer Lin 97.1 861 Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
Saxer Lin 90.1 862
863 ~1. first enable the power output to external sensor,
864
865 2. keep it on as per duration, read sensor value and construct uplink payload
866
867 3. final, close the power output.
868
869 (% style="color:blue" %)**AT Command: AT+3V3T**
870
871 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
872 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
873 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
874 OK
875 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
876 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
Saxer Lin 97.1 877 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
Saxer Lin 90.1 878
879 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
880 Format: Command Code (0x07) followed by 3 bytes.
881
882 The first byte is 01,the second and third bytes are the time to turn on.
883
884 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
885 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
Saxer Lin 97.1 886 * Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
Saxer Lin 90.1 887
kai 16.4 888 = 4. Battery & Power Consumption =
Xiaoling 14.45 889
Edwin Chen 1.1 890
Xiaoling 80.4 891 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 1.1 892
893 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
894
895
kai 16.4 896 = 5. OTA Firmware update =
Edwin Chen 1.1 897
898
Edwin Chen 13.1 899 (% class="wikigeneratedid" %)
Xiaoling 80.4 900 User can change firmware LDS12-LB to:
Edwin Chen 1.1 901
Edwin Chen 13.1 902 * Change Frequency band/ region.
Xiaoling 62.7 903
Edwin Chen 13.1 904 * Update with new features.
Xiaoling 62.7 905
Edwin Chen 13.1 906 * Fix bugs.
Edwin Chen 1.1 907
Xiaoling 82.20 908 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
Edwin Chen 1.1 909
kai 31.1 910 Methods to Update Firmware:
Edwin Chen 1.1 911
Xiaoling 79.15 912 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
Xiaoling 62.7 913
Xiaoling 70.18 914 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 1.1 915
kai 31.1 916 = 6. FAQ =
Edwin Chen 1.1 917
Xiaoling 80.4 918 == 6.1 What is the frequency plan for LDS12-LB? ==
Edwin Chen 1.1 919
Xiaoling 62.7 920
Xiaoling 80.4 921 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
Xiaoling 62.7 922
Edwin Chen 1.1 923
Xiaoling 80.4 924 = 7. Trouble Shooting =
Edwin Chen 1.1 925
Xiaoling 80.4 926 == 7.1 AT Command input doesn't work ==
Edwin Chen 1.1 927
Xiaoling 70.14 928
Xiaoling 80.4 929 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
Xiaoling 70.14 930
931
Xiaoling 80.4 932 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
Xiaoling 70.14 933
934
Xiaoling 80.4 935 (((
Xiaoling 82.21 936 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
Xiaoling 80.4 937 )))
Xiaoling 70.14 938
Xiaoling 80.4 939 (((
Xiaoling 82.21 940 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
Xiaoling 80.4 941 )))
Xiaoling 70.14 942
943
Xiaoling 80.4 944 (((
945 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
946 )))
Xiaoling 70.14 947
Xiaoling 79.7 948 (((
Xiaoling 82.21 949 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
Xiaoling 79.7 950 )))
Xiaoling 70.14 951
952
953 = 8. Order Info =
954
955
Xiaoling 80.4 956 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
Xiaoling 70.14 957
Xiaoling 70.12 958 (% style="color:red" %)**XXX**(%%): **The default frequency band**
Edwin Chen 1.1 959
Ellie Zhang 38.1 960 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
Edwin Chen 1.1 961
Ellie Zhang 38.1 962 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
Edwin Chen 1.1 963
Ellie Zhang 38.1 964 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
Edwin Chen 1.1 965
Ellie Zhang 38.1 966 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
Edwin Chen 1.1 967
Ellie Zhang 38.1 968 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
Edwin Chen 1.1 969
Ellie Zhang 38.1 970 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
Edwin Chen 1.1 971
Ellie Zhang 38.1 972 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
Edwin Chen 1.1 973
Ellie Zhang 38.1 974 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
Edwin Chen 1.1 975
Xiaoling 70.14 976 = 9. ​Packing Info =
Xiaoling 67.11 977
978
Ellie Zhang 39.1 979 (% style="color:#037691" %)**Package Includes**:
Edwin Chen 1.1 980
Xiaoling 80.4 981 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
Edwin Chen 1.1 982
Ellie Zhang 39.1 983 (% style="color:#037691" %)**Dimension and weight**:
Edwin Chen 1.1 984
kai 31.1 985 * Device Size: cm
Edwin Chen 1.1 986
kai 31.1 987 * Device Weight: g
Edwin Chen 1.1 988
kai 31.1 989 * Package Size / pcs : cm
Edwin Chen 1.1 990
kai 31.1 991 * Weight / pcs : g
Edwin Chen 1.1 992
Xiaoling 70.14 993 = 10. Support =
994
995
kai 31.1 996 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 39.6 997
998 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].