Version 109.14 by Xiaoling on 2023/11/10 08:51

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230614153353-1.png]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19 = 1. Introduction =
20
21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22
23
24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25
26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27
28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29
30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31
32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33
34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35
36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37
38 [[image:image-20230615152941-1.png||height="459" width="800"]]
39
40
41 == 1.2 ​Features ==
42
43
44 * LoRaWAN 1.0.3 Class A
45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 * Ultra-low power consumption
47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m
49 * Accuracy :  ±5cm@(0.1-5m), ±1%@(5m-12m)
50 * Monitor Battery Level
51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
53 * AT Commands to change parameters
54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Common DC Characteristics:**
62
63 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
64 * Operating Temperature: -40 ~~ 85°C
65
66 (% style="color:#037691" %)**Probe Specification:**
67
68 * Storage temperature:-20℃~~75℃
69 * Operating temperature : -20℃~~60℃
70 * Measure Distance:
71 ** 0.1m ~~ 12m @ 90% Reflectivity
72 ** 0.1m ~~ 4m @ 10% Reflectivity
73 * Accuracy : ±5cm@(0.1-5m), ±1%@(5m-12m)
74 * Distance resolution : 1cm
75 * Ambient light immunity : 70klux
76 * Enclosure rating : IP65
77 * Light source : LED
78 * Central wavelength : 850nm
79 * FOV : 3.6°
80 * Material of enclosure : ABS+PC
81 * Wire length : 25cm
82
83 (% style="color:#037691" %)**LoRa Spec:**
84
85 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
86 * Max +22 dBm constant RF output vs.
87 * RX sensitivity: down to -139 dBm.
88 * Excellent blocking immunity
89
90 (% style="color:#037691" %)**Battery:**
91
92 * Li/SOCI2 un-chargeable battery
93 * Capacity: 8500mAh
94 * Self-Discharge: <1% / Year @ 25°C
95 * Max continuously current: 130mA
96 * Max boost current: 2A, 1 second
97
98 (% style="color:#037691" %)**Power Consumption**
99
100 * Sleep Mode: 5uA @ 3.3v
101 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
102
103
104 == 1.4 Applications ==
105
106
107 * Horizontal distance measurement
108 * Parking management system
109 * Object proximity and presence detection
110 * Intelligent trash can management system
111 * Robot obstacle avoidance
112 * Automatic control
113 * Sewer
114
115
116 (% style="display:none" %)
117
118 == 1.5 Sleep mode and working mode ==
119
120
121 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
122
123 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
124
125
126 == 1.6 Button & LEDs ==
127
128
129 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
130
131
132 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
133 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
134 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
135 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
136 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
137 )))
138 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
139 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
140 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
141 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
142 )))
143 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
144
145
146 == 1.7 BLE connection ==
147
148
149 LDS12-LB support BLE remote configure.
150
151 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152
153 * Press button to send an uplink
154 * Press button to active device.
155 * Device Power on or reset.
156
157 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158
159
160 == 1.8 Pin Definitions ==
161
162
163 [[image:image-20230805144259-1.png||height="413" width="741"]]
164
165 == 1.9 Mechanical ==
166
167
168 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
169
170
171 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
172
173
174 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
175
176
177 (% style="color:blue" %)**Probe Mechanical:**
178
179
180 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
181
182
183 = 2. Configure LDS12-LB to connect to LoRaWAN network =
184
185 == 2.1 How it works ==
186
187
188 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
189
190 (% style="display:none" %) (%%)
191
192 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
193
194
195 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
196
197 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
198
199 [[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
200
201
202 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
203
204 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
205
206 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
207
208
209 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
210
211
212 (% style="color:blue" %)**Register the device**
213
214 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
215
216
217 (% style="color:blue" %)**Add APP EUI and DEV EUI**
218
219 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
220
221
222 (% style="color:blue" %)**Add APP EUI in the application**
223
224
225 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
226
227
228 (% style="color:blue" %)**Add APP KEY**
229
230 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
231
232
233 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
234
235
236 Press the button for 5 seconds to activate the LDS12-LB.
237
238 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
239
240 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
241
242
243 == 2.3 ​Uplink Payload ==
244
245 === 2.3.1 Device Status, FPORT~=5 ===
246
247
248 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
249
250 The Payload format is as below.
251
252 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
253 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
254 **Size(bytes)**
255 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
256 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
257
258 Example parse in TTNv3
259
260 [[image:image-20230805103904-1.png||height="131" width="711"]]
261
262 (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
263
264 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
265
266 (% style="color:blue" %)**Frequency Band**:
267
268 0x01: EU868
269
270 0x02: US915
271
272 0x03: IN865
273
274 0x04: AU915
275
276 0x05: KZ865
277
278 0x06: RU864
279
280 0x07: AS923
281
282 0x08: AS923-1
283
284 0x09: AS923-2
285
286 0x0a: AS923-3
287
288 0x0b: CN470
289
290 0x0c: EU433
291
292 0x0d: KR920
293
294 0x0e: MA869
295
296 (% style="color:blue" %)**Sub-Band**:
297
298 AU915 and US915:value 0x00 ~~ 0x08
299
300 CN470: value 0x0B ~~ 0x0C
301
302 Other Bands: Always 0x00
303
304 (% style="color:blue" %)**Battery Info**:
305
306 Check the battery voltage.
307
308 Ex1: 0x0B45 = 2885mV
309
310 Ex2: 0x0B49 = 2889mV
311
312
313 === 2.3.2 Uplink Payload, FPORT~=2 ===
314
315
316 (((
317 LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
318
319 periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
320
321 Uplink Payload totals 11 bytes.
322 )))
323
324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
325 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 **Size(bytes)**
327 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
328 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
329 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
330 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
331 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
332 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
333 [[Message Type>>||anchor="HMessageType"]]
334 )))
335
336 [[image:image-20230805104104-2.png||height="136" width="754"]]
337
338
339 ==== (% style="color:blue" %)**Battery Info**(%%) ====
340
341
342 Check the battery voltage for LDS12-LB.
343
344 Ex1: 0x0B45 = 2885mV
345
346 Ex2: 0x0B49 = 2889mV
347
348
349 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
350
351
352 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
353
354
355 **Example**:
356
357 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
358
359 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
360
361
362 ==== (% style="color:blue" %)**Distance**(%%) ====
363
364
365 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
366
367
368 **Example**:
369
370 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
371
372
373 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
374
375
376 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
377
378
379 **Example**:
380
381 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
382
383 Customers can judge whether they need to adjust the environment based on the signal strength.
384
385
386 **1) When the sensor detects valid data:**
387
388 [[image:image-20230805155335-1.png||height="145" width="724"]]
389
390
391 **2) When the sensor detects invalid data:**
392
393 [[image:image-20230805155428-2.png||height="139" width="726"]]
394
395
396 **3) When the sensor is not connected:**
397
398 [[image:image-20230805155515-3.png||height="143" width="725"]]
399
400
401 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
402
403
404 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
405
406 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
407
408 **Example:**
409
410 If byte[0]&0x01=0x00 : Normal uplink packet.
411
412 If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
413
414
415 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
416
417
418 Characterize the internal temperature value of the sensor.
419
420 **Example: **
421 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
422 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
423
424
425 ==== (% style="color:blue" %)**Message Type**(%%) ====
426
427
428 (((
429 For a normal uplink payload, the message type is always 0x01.
430 )))
431
432 (((
433 Valid Message Type:
434 )))
435
436 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
437 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
438 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
439 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
440
441 [[image:image-20230805150315-4.png||height="233" width="723"]]
442
443
444 === 2.3.3 Historical measuring distance, FPORT~=3 ===
445
446
447 LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
448
449 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
450
451 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
452 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
453 **Size(bytes)**
454 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
455 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
456 Reserve(0xFF)
457 )))|Distance|Distance signal strength|(% style="width:88px" %)(((
458 LiDAR temp
459 )))|(% style="width:85px" %)Unix TimeStamp
460
461 **Interrupt flag & Interrupt level:**
462
463 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
464 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
465 **Size(bit)**
466 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
467 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
468 Interrupt flag
469 )))
470
471 * (((
472 Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
473 )))
474
475 For example, in the US915 band, the max payload for different DR is:
476
477 **a) DR0:** max is 11 bytes so one entry of data
478
479 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
480
481 **c) DR2:** total payload includes 11 entries of data
482
483 **d) DR3:** total payload includes 22 entries of data.
484
485 If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
486
487
488 **Downlink:**
489
490 0x31 64 CC 68 0C 64 CC 69 74 05
491
492 [[image:image-20230805144936-2.png||height="113" width="746"]]
493
494 **Uplink:**
495
496 43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
497
498
499 **Parsed Value:**
500
501 [DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
502
503
504 [360,176,30,High,True,2023-08-04 02:53:00],
505
506 [355,168,30,Low,False,2023-08-04 02:53:29],
507
508 [245,211,30,Low,False,2023-08-04 02:54:29],
509
510 [57,700,30,Low,False,2023-08-04 02:55:29],
511
512 [361,164,30,Low,True,2023-08-04 02:56:00],
513
514 [337,184,30,Low,False,2023-08-04 02:56:40],
515
516 [20,4458,30,Low,False,2023-08-04 02:57:40],
517
518 [362,173,30,Low,False,2023-08-04 02:58:53],
519
520
521 **History read from serial port:**
522
523 [[image:image-20230805145056-3.png]]
524
525
526 === 2.3.4 Decode payload in The Things Network ===
527
528
529 While using TTN network, you can add the payload format to decode the payload.
530
531 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
532
533
534 (((
535 The payload decoder function for TTN is here:
536 )))
537
538 (((
539 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
540 )))
541
542
543 == 2.4 ​Show Data in DataCake IoT Server ==
544
545
546 (((
547 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
548 )))
549
550
551 (((
552 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
553 )))
554
555 (((
556 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
557 )))
558
559
560 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
561
562
563 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
564
565
566 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
567
568 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
569
570 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
571
572
573 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
574
575 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
576
577
578 == 2.5 Datalog Feature ==
579
580
581 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
582
583
584 === 2.5.1 Ways to get datalog via LoRaWAN ===
585
586
587 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
588
589 * (((
590 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
591 )))
592 * (((
593 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
594 )))
595
596 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
597
598 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
599
600
601 === 2.5.2 Unix TimeStamp ===
602
603
604 LDS12-LB uses Unix TimeStamp format based on
605
606 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
607
608 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
609
610 Below is the converter example
611
612 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
613
614
615 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
616
617
618 === 2.5.3 Set Device Time ===
619
620
621 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
622
623 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
624
625 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
626
627
628 === 2.5.4 Poll sensor value ===
629
630
631 Users can poll sensor values based on timestamps. Below is the downlink command.
632
633 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
634 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
635 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
636 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
637
638 (((
639 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
640 )))
641
642 (((
643 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
644 )))
645
646 (((
647 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
648 )))
649
650 (((
651 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
652 )))
653
654
655 == 2.6 Frequency Plans ==
656
657
658 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
659
660 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
661
662
663 == 2.7 LiDAR ToF Measurement ==
664
665 === 2.7.1 Principle of Distance Measurement ===
666
667
668 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
669
670 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
671
672
673 === 2.7.2 Distance Measurement Characteristics ===
674
675
676 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
677
678 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
679
680
681 (((
682 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
683 )))
684
685 (((
686 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
687 )))
688
689 (((
690 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
691 )))
692
693
694 (((
695 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
696 )))
697
698 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
699
700 (((
701 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
702 )))
703
704 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
705
706 (((
707 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
708 )))
709
710
711 === 2.7.3 Notice of usage ===
712
713
714 Possible invalid /wrong reading for LiDAR ToF tech:
715
716 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
717 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
718 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
719 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
720
721
722 === 2.7.4  Reflectivity of different objects ===
723
724
725 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
726 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
727 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
728 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
729 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
730 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
731 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
732 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
733 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
734 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
735 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
736 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
737 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
738 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
739 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
740 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
741 |(% style="width:53px" %)15|(% style="width:229px" %)(((
742 Unpolished white metal surface
743 )))|(% style="width:93px" %)130%
744 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
745 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
746 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
747
748
749 = 3. Configure LDS12-LB =
750
751 == 3.1 Configure Methods ==
752
753
754 LDS12-LB supports below configure method:
755
756 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
757
758 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
759
760 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
761
762
763 == 3.2 General Commands ==
764
765
766 These commands are to configure:
767
768 * General system settings like: uplink interval.
769
770 * LoRaWAN protocol & radio related command.
771
772 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
773
774 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
775
776
777 == 3.3 Commands special design for LDS12-LB ==
778
779
780 These commands only valid for LDS12-LB, as below:
781
782
783 === 3.3.1 Set Transmit Interval Time ===
784
785
786 (((
787 Feature: Change LoRaWAN End Node Transmit Interval.
788 )))
789
790 (((
791 (% style="color:blue" %)**AT Command: AT+TDC**
792 )))
793
794 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
795 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
796 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
797 30000
798 OK
799 the interval is 30000ms = 30s
800 )))
801 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
802 OK
803 Set transmit interval to 60000ms = 60 seconds
804 )))
805
806 (((
807 (% style="color:blue" %)**Downlink Command: 0x01**
808 )))
809
810 (((
811 Format: Command Code (0x01) followed by 3 bytes time value.
812 )))
813
814 (((
815 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
816 )))
817
818 * (((
819 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
820 )))
821 * (((
822 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
823
824
825
826 )))
827
828 === 3.3.2 Set Interrupt Mode ===
829
830
831 Feature, Set Interrupt mode for pin of GPIO_EXTI.
832
833 When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
834
835 (% style="color:blue" %)**AT Command: AT+INTMOD**
836
837 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
838 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
839 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
840 0
841 OK
842 the mode is 0 =Disable Interrupt
843 )))
844 |(% style="width:154px" %)(((
845 AT+INTMOD=2
846
847 (default)
848 )))|(% style="width:196px" %)(((
849 Set Transmit Interval
850 0. (Disable Interrupt),
851 ~1. (Trigger by rising and falling edge)
852 2. (Trigger by falling edge)
853 3. (Trigger by rising edge)
854 )))|(% style="width:157px" %)OK
855
856 (% style="color:blue" %)**Downlink Command: 0x06**
857
858 Format: Command Code (0x06) followed by 3 bytes.
859
860 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
861
862 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
863
864 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
865
866
867 === 3.3.3  Set Power Output Duration ===
868
869 Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
870
871 ~1. first enable the power output to external sensor,
872
873 2. keep it on as per duration, read sensor value and construct uplink payload
874
875 3. final, close the power output.
876
877 (% style="color:blue" %)**AT Command: AT+3V3T**
878
879 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
880 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
881 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
882 OK
883 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
884 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
885 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
886
887 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
888 Format: Command Code (0x07) followed by 3 bytes.
889
890 The first byte is 01,the second and third bytes are the time to turn on.
891
892 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
893 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
894 * Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
895
896
897 = 4. Battery & Power Consumption =
898
899
900 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
901
902 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
903
904
905 = 5. OTA Firmware update =
906
907
908 (% class="wikigeneratedid" %)
909 User can change firmware LDS12-LB to:
910
911 * Change Frequency band/ region.
912
913 * Update with new features.
914
915 * Fix bugs.
916
917 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
918
919 Methods to Update Firmware:
920
921 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
922
923 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
924
925
926 = 6. FAQ =
927
928 == 6.1 What is the frequency plan for LDS12-LB? ==
929
930
931 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
932
933
934 = 7. Trouble Shooting =
935
936 == 7.1 AT Command input doesn't work ==
937
938
939 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
940
941
942 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
943
944
945 (((
946 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
947 )))
948
949 (((
950 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
951 )))
952
953
954 (((
955 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
956 )))
957
958 (((
959 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
960 )))
961
962
963 = 8. Order Info =
964
965
966 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
967
968 (% style="color:red" %)**XXX**(%%): **The default frequency band**
969
970 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
971
972 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
973
974 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
975
976 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
977
978 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
979
980 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
981
982 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
983
984 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
985
986
987 = 9. ​Packing Info =
988
989
990 (% style="color:#037691" %)**Package Includes**:
991
992 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
993
994 (% style="color:#037691" %)**Dimension and weight**:
995
996 * Device Size: cm
997
998 * Device Weight: g
999
1000 * Package Size / pcs : cm
1001
1002 * Weight / pcs : g
1003
1004
1005 = 10. Support =
1006
1007
1008 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1009
1010 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].