Version 109.11 by Xiaoling on 2023/08/07 09:45

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230614153353-1.png]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19 = 1. Introduction =
20
21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22
23
24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25
26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27
28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29
30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31
32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33
34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35
36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37
38 [[image:image-20230615152941-1.png||height="459" width="800"]]
39
40
41 == 1.2 ​Features ==
42
43
44 * LoRaWAN 1.0.3 Class A
45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 * Ultra-low power consumption
47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 * Monitor Battery Level
51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
53 * AT Commands to change parameters
54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57
58
59 == 1.3 Specification ==
60
61
62 (% style="color:#037691" %)**Common DC Characteristics:**
63
64 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
65 * Operating Temperature: -40 ~~ 85°C
66
67 (% style="color:#037691" %)**Probe Specification:**
68
69 * Storage temperature:-20℃~~75℃
70 * Operating temperature : -20℃~~60℃
71 * Measure Distance:
72 ** 0.1m ~~ 12m @ 90% Reflectivity
73 ** 0.1m ~~ 4m @ 10% Reflectivity
74 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
75 * Distance resolution : 5mm
76 * Ambient light immunity : 70klux
77 * Enclosure rating : IP65
78 * Light source : LED
79 * Central wavelength : 850nm
80 * FOV : 3.6°
81 * Material of enclosure : ABS+PC
82 * Wire length : 25cm
83
84 (% style="color:#037691" %)**LoRa Spec:**
85
86 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
87 * Max +22 dBm constant RF output vs.
88 * RX sensitivity: down to -139 dBm.
89 * Excellent blocking immunity
90
91 (% style="color:#037691" %)**Battery:**
92
93 * Li/SOCI2 un-chargeable battery
94 * Capacity: 8500mAh
95 * Self-Discharge: <1% / Year @ 25°C
96 * Max continuously current: 130mA
97 * Max boost current: 2A, 1 second
98
99 (% style="color:#037691" %)**Power Consumption**
100
101 * Sleep Mode: 5uA @ 3.3v
102 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
103
104
105
106 == 1.4 Applications ==
107
108
109 * Horizontal distance measurement
110 * Parking management system
111 * Object proximity and presence detection
112 * Intelligent trash can management system
113 * Robot obstacle avoidance
114 * Automatic control
115 * Sewer
116
117
118
119 (% style="display:none" %)
120
121 == 1.5 Sleep mode and working mode ==
122
123
124 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
125
126 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
127
128
129 == 1.6 Button & LEDs ==
130
131
132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
133
134
135 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
136 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
137 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
138 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
139 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
140 )))
141 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
142 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
143 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
144 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
145 )))
146 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
147
148
149
150 == 1.7 BLE connection ==
151
152
153 LDS12-LB support BLE remote configure.
154
155 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
156
157 * Press button to send an uplink
158 * Press button to active device.
159 * Device Power on or reset.
160
161 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
162
163
164 == 1.8 Pin Definitions ==
165
166
167 [[image:image-20230805144259-1.png||height="413" width="741"]]
168
169 == 1.9 Mechanical ==
170
171
172 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
173
174
175 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
176
177
178 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
179
180
181 (% style="color:blue" %)**Probe Mechanical:**
182
183
184 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
185
186
187 = 2. Configure LDS12-LB to connect to LoRaWAN network =
188
189 == 2.1 How it works ==
190
191
192 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
193
194 (% style="display:none" %) (%%)
195
196 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
197
198
199 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
200
201 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
202
203 [[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
204
205
206 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
207
208 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
209
210 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
211
212
213 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
214
215
216 (% style="color:blue" %)**Register the device**
217
218 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
219
220
221 (% style="color:blue" %)**Add APP EUI and DEV EUI**
222
223 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
224
225
226 (% style="color:blue" %)**Add APP EUI in the application**
227
228
229 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
230
231
232 (% style="color:blue" %)**Add APP KEY**
233
234 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
235
236
237 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
238
239
240 Press the button for 5 seconds to activate the LDS12-LB.
241
242 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
243
244 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
245
246
247 == 2.3 ​Uplink Payload ==
248
249 === 2.3.1 Device Status, FPORT~=5 ===
250
251
252 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
253
254 The Payload format is as below.
255
256 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
257 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
258 **Size(bytes)**
259 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
260 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
261
262 Example parse in TTNv3
263
264 [[image:image-20230805103904-1.png||height="131" width="711"]]
265
266 (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
267
268 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
269
270 (% style="color:blue" %)**Frequency Band**:
271
272 0x01: EU868
273
274 0x02: US915
275
276 0x03: IN865
277
278 0x04: AU915
279
280 0x05: KZ865
281
282 0x06: RU864
283
284 0x07: AS923
285
286 0x08: AS923-1
287
288 0x09: AS923-2
289
290 0x0a: AS923-3
291
292 0x0b: CN470
293
294 0x0c: EU433
295
296 0x0d: KR920
297
298 0x0e: MA869
299
300 (% style="color:blue" %)**Sub-Band**:
301
302 AU915 and US915:value 0x00 ~~ 0x08
303
304 CN470: value 0x0B ~~ 0x0C
305
306 Other Bands: Always 0x00
307
308 (% style="color:blue" %)**Battery Info**:
309
310 Check the battery voltage.
311
312 Ex1: 0x0B45 = 2885mV
313
314 Ex2: 0x0B49 = 2889mV
315
316
317 === 2.3.2 Uplink Payload, FPORT~=2 ===
318
319
320 (((
321 LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
322
323 periodically send this uplink every 20 minutes, this interval [[can be changed>>||anchor="H3.3.1SetTransmitIntervalTime"]].
324
325 Uplink Payload totals 11 bytes.
326 )))
327
328 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
329 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
330 **Size(bytes)**
331 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
332 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
333 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
334 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
335 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
336 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
337 [[Message Type>>||anchor="HMessageType"]]
338 )))
339
340 [[image:image-20230805104104-2.png||height="136" width="754"]]
341
342
343 ==== (% style="color:blue" %)**Battery Info**(%%) ====
344
345
346 Check the battery voltage for LDS12-LB.
347
348 Ex1: 0x0B45 = 2885mV
349
350 Ex2: 0x0B49 = 2889mV
351
352
353 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
354
355
356 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
357
358
359 **Example**:
360
361 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
362
363 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
364
365
366 ==== (% style="color:blue" %)**Distance**(%%) ====
367
368
369 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
370
371
372 **Example**:
373
374 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
375
376
377 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
378
379
380 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
381
382
383 **Example**:
384
385 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
386
387 Customers can judge whether they need to adjust the environment based on the signal strength.
388
389
390 **1) When the sensor detects valid data:**
391
392 [[image:image-20230805155335-1.png||height="145" width="724"]]
393
394
395 **2) When the sensor detects invalid data:**
396
397 [[image:image-20230805155428-2.png||height="139" width="726"]]
398
399
400 **3) When the sensor is not connected:**
401
402 [[image:image-20230805155515-3.png||height="143" width="725"]]
403
404
405 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
406
407
408 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
409
410 Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.8PinDefinitions"]] of GPIO_EXTI .
411
412 **Example:**
413
414 If byte[0]&0x01=0x00 : Normal uplink packet.
415
416 If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
417
418
419 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
420
421
422 Characterize the internal temperature value of the sensor.
423
424 **Example: **
425 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
426 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
427
428
429 ==== (% style="color:blue" %)**Message Type**(%%) ====
430
431
432 (((
433 For a normal uplink payload, the message type is always 0x01.
434 )))
435
436 (((
437 Valid Message Type:
438 )))
439
440 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
441 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
442 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)Normal Uplink Payload
443 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)Configure Info Payload
444
445 [[image:image-20230805150315-4.png||height="233" width="723"]]
446
447
448 === 2.3.3 Historical measuring distance, FPORT~=3 ===
449
450
451 LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>||anchor="H2.5.4Pollsensorvalue"]].
452
453 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time measuring distance.
454
455 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
456 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
457 **Size(bytes)**
458 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD; color: white; width: 85px;" %)**1**|=(% style="background-color: #4F81BD; color: white; width: 85px;" %)4
459 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
460 Reserve(0xFF)
461 )))|Distance|Distance signal strength|(% style="width:88px" %)(((
462 LiDAR temp
463 )))|(% style="width:85px" %)Unix TimeStamp
464
465 **Interrupt flag & Interrupt level:**
466
467 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
468 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
469 **Size(bit)**
470 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 90px; background-color: #4F81BD; color: white;" %)**bit1**|=(% style="background-color: #4F81BD; color: white; width: 90px;" %)**bit0**
471 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
472 Interrupt flag
473 )))
474
475 * (((
476 Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>||anchor="H2.3.2UplinkPayload2CFPORT3D2"]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
477 )))
478
479 For example, in the US915 band, the max payload for different DR is:
480
481 **a) DR0:** max is 11 bytes so one entry of data
482
483 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
484
485 **c) DR2:** total payload includes 11 entries of data
486
487 **d) DR3:** total payload includes 22 entries of data.
488
489 If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
490
491
492 **Downlink:**
493
494 0x31 64 CC 68 0C 64 CC 69 74 05
495
496 [[image:image-20230805144936-2.png||height="113" width="746"]]
497
498 **Uplink:**
499
500 43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
501
502
503 **Parsed Value:**
504
505 [DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
506
507
508 [360,176,30,High,True,2023-08-04 02:53:00],
509
510 [355,168,30,Low,False,2023-08-04 02:53:29],
511
512 [245,211,30,Low,False,2023-08-04 02:54:29],
513
514 [57,700,30,Low,False,2023-08-04 02:55:29],
515
516 [361,164,30,Low,True,2023-08-04 02:56:00],
517
518 [337,184,30,Low,False,2023-08-04 02:56:40],
519
520 [20,4458,30,Low,False,2023-08-04 02:57:40],
521
522 [362,173,30,Low,False,2023-08-04 02:58:53],
523
524
525 **History read from serial port:**
526
527 [[image:image-20230805145056-3.png]]
528
529
530 === 2.3.4 Decode payload in The Things Network ===
531
532
533 While using TTN network, you can add the payload format to decode the payload.
534
535 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
536
537
538 (((
539 The payload decoder function for TTN is here:
540 )))
541
542 (((
543 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
544 )))
545
546
547 == 2.4 ​Show Data in DataCake IoT Server ==
548
549
550 (((
551 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
552 )))
553
554
555 (((
556 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
557 )))
558
559 (((
560 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
561 )))
562
563
564 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
565
566
567 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
568
569
570 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
571
572 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
573
574 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
575
576
577 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
578
579 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
580
581
582 == 2.5 Datalog Feature ==
583
584
585 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
586
587
588 === 2.5.1 Ways to get datalog via LoRaWAN ===
589
590
591 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
592
593 * (((
594 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
595 )))
596 * (((
597 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
598 )))
599
600 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
601
602 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
603
604
605 === 2.5.2 Unix TimeStamp ===
606
607
608 LDS12-LB uses Unix TimeStamp format based on
609
610 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
611
612 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
613
614 Below is the converter example
615
616 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
617
618
619 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
620
621
622 === 2.5.3 Set Device Time ===
623
624
625 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
626
627 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
628
629 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
630
631
632 === 2.5.4 Poll sensor value ===
633
634
635 Users can poll sensor values based on timestamps. Below is the downlink command.
636
637 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
638 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
639 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
640 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
641
642 (((
643 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
644 )))
645
646 (((
647 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
648 )))
649
650 (((
651 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
652 )))
653
654 (((
655 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
656 )))
657
658
659 == 2.6 Frequency Plans ==
660
661
662 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
663
664 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
665
666
667 == 2.7 LiDAR ToF Measurement ==
668
669 === 2.7.1 Principle of Distance Measurement ===
670
671
672 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
673
674 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
675
676
677 === 2.7.2 Distance Measurement Characteristics ===
678
679
680 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
681
682 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
683
684
685 (((
686 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
687 )))
688
689 (((
690 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
691 )))
692
693 (((
694 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
695 )))
696
697
698 (((
699 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
700 )))
701
702 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
703
704 (((
705 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
706 )))
707
708 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
709
710 (((
711 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
712 )))
713
714
715 === 2.7.3 Notice of usage ===
716
717
718 Possible invalid /wrong reading for LiDAR ToF tech:
719
720 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
721 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
722 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
723 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
724
725
726
727 === 2.7.4  Reflectivity of different objects ===
728
729
730 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
731 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
732 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
733 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
734 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
735 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
736 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
737 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
738 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
739 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
740 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
741 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
742 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
743 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
744 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
745 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
746 |(% style="width:53px" %)15|(% style="width:229px" %)(((
747 Unpolished white metal surface
748 )))|(% style="width:93px" %)130%
749 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
750 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
751 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
752
753
754
755 = 3. Configure LDS12-LB =
756
757 == 3.1 Configure Methods ==
758
759
760 LDS12-LB supports below configure method:
761
762 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
763
764 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
765
766 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
767
768
769
770 == 3.2 General Commands ==
771
772
773 These commands are to configure:
774
775 * General system settings like: uplink interval.
776
777 * LoRaWAN protocol & radio related command.
778
779 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
780
781 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
782
783
784 == 3.3 Commands special design for LDS12-LB ==
785
786
787 These commands only valid for LDS12-LB, as below:
788
789
790 === 3.3.1 Set Transmit Interval Time ===
791
792
793 (((
794 Feature: Change LoRaWAN End Node Transmit Interval.
795 )))
796
797 (((
798 (% style="color:blue" %)**AT Command: AT+TDC**
799 )))
800
801 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
802 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
803 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
804 30000
805 OK
806 the interval is 30000ms = 30s
807 )))
808 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
809 OK
810 Set transmit interval to 60000ms = 60 seconds
811 )))
812
813 (((
814 (% style="color:blue" %)**Downlink Command: 0x01**
815 )))
816
817 (((
818 Format: Command Code (0x01) followed by 3 bytes time value.
819 )))
820
821 (((
822 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
823 )))
824
825 * (((
826 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
827 )))
828 * (((
829 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
830
831
832
833 )))
834
835 === 3.3.2 Set Interrupt Mode ===
836
837
838 Feature, Set Interrupt mode for pin of GPIO_EXTI.
839
840 When AT+INTMOD=0 is set, GPIO_EXTI is used as a digital input port.
841
842 (% style="color:blue" %)**AT Command: AT+INTMOD**
843
844 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
845 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
846 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
847 0
848 OK
849 the mode is 0 =Disable Interrupt
850 )))
851 |(% style="width:154px" %)(((
852 AT+INTMOD=2
853
854 (default)
855 )))|(% style="width:196px" %)(((
856 Set Transmit Interval
857 0. (Disable Interrupt),
858 ~1. (Trigger by rising and falling edge)
859 2. (Trigger by falling edge)
860 3. (Trigger by rising edge)
861 )))|(% style="width:157px" %)OK
862
863 (% style="color:blue" %)**Downlink Command: 0x06**
864
865 Format: Command Code (0x06) followed by 3 bytes.
866
867 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
868
869 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
870
871 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
872
873
874
875 === 3.3.3  Set Power Output Duration ===
876
877 Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
878
879 ~1. first enable the power output to external sensor,
880
881 2. keep it on as per duration, read sensor value and construct uplink payload
882
883 3. final, close the power output.
884
885 (% style="color:blue" %)**AT Command: AT+3V3T**
886
887 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
888 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
889 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
890 OK
891 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
892 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
893 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
894
895 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
896 Format: Command Code (0x07) followed by 3 bytes.
897
898 The first byte is 01,the second and third bytes are the time to turn on.
899
900 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
901 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
902 * Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
903
904
905
906 = 4. Battery & Power Consumption =
907
908
909 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
910
911 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
912
913
914 = 5. OTA Firmware update =
915
916
917 (% class="wikigeneratedid" %)
918 User can change firmware LDS12-LB to:
919
920 * Change Frequency band/ region.
921
922 * Update with new features.
923
924 * Fix bugs.
925
926 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
927
928 Methods to Update Firmware:
929
930 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
931
932 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
933
934
935
936 = 6. FAQ =
937
938 == 6.1 What is the frequency plan for LDS12-LB? ==
939
940
941 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
942
943
944 = 7. Trouble Shooting =
945
946 == 7.1 AT Command input doesn't work ==
947
948
949 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
950
951
952 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
953
954
955 (((
956 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
957 )))
958
959 (((
960 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
961 )))
962
963
964 (((
965 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
966 )))
967
968 (((
969 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
970 )))
971
972
973 = 8. Order Info =
974
975
976 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
977
978 (% style="color:red" %)**XXX**(%%): **The default frequency band**
979
980 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
981
982 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
983
984 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
985
986 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
987
988 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
989
990 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
991
992 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
993
994 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
995
996
997
998 = 9. ​Packing Info =
999
1000
1001 (% style="color:#037691" %)**Package Includes**:
1002
1003 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
1004
1005 (% style="color:#037691" %)**Dimension and weight**:
1006
1007 * Device Size: cm
1008
1009 * Device Weight: g
1010
1011 * Package Size / pcs : cm
1012
1013 * Weight / pcs : g
1014
1015
1016
1017 = 10. Support =
1018
1019
1020 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1021
1022 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].