Version 106.1 by Saxer Lin on 2023/08/05 16:14

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230614153353-1.png]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19 = 1. Introduction =
20
21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22
23
24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25
26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27
28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29
30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31
32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33
34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35
36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37
38 [[image:image-20230615152941-1.png||height="459" width="800"]]
39
40
41 == 1.2 ​Features ==
42
43
44 * LoRaWAN 1.0.3 Class A
45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 * Ultra-low power consumption
47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 * Monitor Battery Level
51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
53 * AT Commands to change parameters
54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57 == 1.3 Specification ==
58
59
60 (% style="color:#037691" %)**Common DC Characteristics:**
61
62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 * Operating Temperature: -40 ~~ 85°C
64
65 (% style="color:#037691" %)**Probe Specification:**
66
67 * Storage temperature:-20℃~~75℃
68 * Operating temperature : -20℃~~60℃
69 * Measure Distance:
70 ** 0.1m ~~ 12m @ 90% Reflectivity
71 ** 0.1m ~~ 4m @ 10% Reflectivity
72 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Distance resolution : 5mm
74 * Ambient light immunity : 70klux
75 * Enclosure rating : IP65
76 * Light source : LED
77 * Central wavelength : 850nm
78 * FOV : 3.6°
79 * Material of enclosure : ABS+PC
80 * Wire length : 25cm
81
82 (% style="color:#037691" %)**LoRa Spec:**
83
84 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 * Max +22 dBm constant RF output vs.
86 * RX sensitivity: down to -139 dBm.
87 * Excellent blocking immunity
88
89 (% style="color:#037691" %)**Battery:**
90
91 * Li/SOCI2 un-chargeable battery
92 * Capacity: 8500mAh
93 * Self-Discharge: <1% / Year @ 25°C
94 * Max continuously current: 130mA
95 * Max boost current: 2A, 1 second
96
97 (% style="color:#037691" %)**Power Consumption**
98
99 * Sleep Mode: 5uA @ 3.3v
100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101
102 == 1.4 Applications ==
103
104
105 * Horizontal distance measurement
106 * Parking management system
107 * Object proximity and presence detection
108 * Intelligent trash can management system
109 * Robot obstacle avoidance
110 * Automatic control
111 * Sewer
112
113 (% style="display:none" %)
114
115 == 1.5 Sleep mode and working mode ==
116
117
118 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119
120 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121
122
123 == 1.6 Button & LEDs ==
124
125
126 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
127
128
129 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
131 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 )))
135 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 )))
140 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141
142 == 1.7 BLE connection ==
143
144
145 LDS12-LB support BLE remote configure.
146
147 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148
149 * Press button to send an uplink
150 * Press button to active device.
151 * Device Power on or reset.
152
153 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154
155
156 == 1.8 Pin Definitions ==
157
158
159 [[image:image-20230805144259-1.png||height="413" width="741"]]
160
161 == 1.9 Mechanical ==
162
163
164 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
165
166
167 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
168
169
170 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
171
172
173 (% style="color:blue" %)**Probe Mechanical:**
174
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177
178
179 = 2. Configure LDS12-LB to connect to LoRaWAN network =
180
181 == 2.1 How it works ==
182
183
184 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
185
186 (% style="display:none" %) (%%)
187
188 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
189
190
191 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
192
193 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194
195 [[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
196
197
198 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
199
200 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
201
202 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
203
204
205 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
206
207
208 (% style="color:blue" %)**Register the device**
209
210 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
211
212
213 (% style="color:blue" %)**Add APP EUI and DEV EUI**
214
215 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
216
217
218 (% style="color:blue" %)**Add APP EUI in the application**
219
220
221 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
222
223
224 (% style="color:blue" %)**Add APP KEY**
225
226 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
227
228
229 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
230
231
232 Press the button for 5 seconds to activate the LDS12-LB.
233
234 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
235
236 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
237
238
239 == 2.3 ​Uplink Payload ==
240
241 === 2.3.1 Device Status, FPORT~=5 ===
242
243
244 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
245
246 The Payload format is as below.
247
248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
249 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
250 **Size(bytes)**
251 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
252 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
253
254 Example parse in TTNv3
255
256 [[image:image-20230805103904-1.png||height="131" width="711"]]
257
258 (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
259
260 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
261
262 (% style="color:blue" %)**Frequency Band**:
263
264 0x01: EU868
265
266 0x02: US915
267
268 0x03: IN865
269
270 0x04: AU915
271
272 0x05: KZ865
273
274 0x06: RU864
275
276 0x07: AS923
277
278 0x08: AS923-1
279
280 0x09: AS923-2
281
282 0x0a: AS923-3
283
284 0x0b: CN470
285
286 0x0c: EU433
287
288 0x0d: KR920
289
290 0x0e: MA869
291
292 (% style="color:blue" %)**Sub-Band**:
293
294 AU915 and US915:value 0x00 ~~ 0x08
295
296 CN470: value 0x0B ~~ 0x0C
297
298 Other Bands: Always 0x00
299
300 (% style="color:blue" %)**Battery Info**:
301
302 Check the battery voltage.
303
304 Ex1: 0x0B45 = 2885mV
305
306 Ex2: 0x0B49 = 2889mV
307
308
309 === 2.3.2 Uplink Payload, FPORT~=2 ===
310
311
312 (((
313 LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
314
315 periodically send this uplink every 20 minutes, this interval [[can be changed>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H3.3.1SetTransmitIntervalTime]].
316
317 Uplink Payload totals 11 bytes.
318 )))
319
320 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
321 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
322 **Size(bytes)**
323 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
324 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
325 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
326 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
327 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
328 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
329 [[Message Type>>||anchor="HMessageType"]]
330 )))
331
332 [[image:image-20230805104104-2.png||height="136" width="754"]]
333
334
335 ==== (% style="color:blue" %)**Battery Info**(%%) ====
336
337
338 Check the battery voltage for LDS12-LB.
339
340 Ex1: 0x0B45 = 2885mV
341
342 Ex2: 0x0B49 = 2889mV
343
344
345 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
346
347
348 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
349
350
351 **Example**:
352
353 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
354
355 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
356
357
358 ==== (% style="color:blue" %)**Distance**(%%) ====
359
360
361 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
362
363
364 **Example**:
365
366 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
367
368
369 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
370
371
372 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
373
374
375 **Example**:
376
377 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
378
379 Customers can judge whether they need to adjust the environment based on the signal strength.
380
381
382 **1) When the sensor detects valid data:**
383
384 [[image:image-20230805155335-1.png||height="145" width="724"]]
385
386
387 **2) When the sensor detects invalid data:**
388
389 [[image:image-20230805155428-2.png||height="139" width="726"]]
390
391
392 **3) When the sensor is not connected:**
393
394 [[image:image-20230805155515-3.png||height="143" width="725"]]
395
396
397 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
398
399
400 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
401
402 Note: The Internet Pin is a separate pin in the screw terminal. See GPIO_EXTI of [[pin mapping>>||anchor="H1.8PinDefinitions"]].
403
404 **Example:**
405
406 If byte[0]&0x01=0x00 : Normal uplink packet.
407
408 If byte[0]&0x01=0x01 : Interrupt Uplink Packet.
409
410
411 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
412
413
414 Characterize the internal temperature value of the sensor.
415
416 **Example: **
417 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
418 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
419
420
421 ==== (% style="color:blue" %)**Message Type**(%%) ====
422
423
424 (((
425 For a normal uplink payload, the message type is always 0x01.
426 )))
427
428 (((
429 Valid Message Type:
430 )))
431
432 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
433 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
434 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
435 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
436
437 [[image:image-20230805150315-4.png||height="233" width="723"]]
438
439
440 === 2.3.3 Historical measuring distance, FPORT~=3 ===
441
442 LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H2.5.4Pollsensorvalue]].
443
444 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time water flow status.
445
446 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
447 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
448 **Size(bytes)**
449 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 88px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 85px;" %)4
450 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
451 Reserve(0xFF)
452 )))|Distance|Distance signal strength|(% style="width:88px" %)(((
453 LiDAR temp
454 )))|(% style="width:85px" %)Unix TimeStamp
455
456 **Interrupt flag & Interrupt level:**
457
458 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:501px" %)
459 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
460 **Size(bit)**
461 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 91px; background-color: rgb(79, 129, 189); color: white;" %)**bit1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 88px;" %)**bit0**
462 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
463 Interrupt flag
464 )))
465
466 * (((
467 Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H2.3.2UplinkPayload2CFPORT3D2]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
468 )))
469
470 For example, in the US915 band, the max payload for different DR is:
471
472 **a) DR0:** max is 11 bytes so one entry of data
473
474 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
475
476 **c) DR2:** total payload includes 11 entries of data
477
478 **d) DR3:** total payload includes 22 entries of data.
479
480 If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
481
482
483 **Downlink:**
484
485 0x31 64 CC 68 0C 64 CC 69 74 05
486
487 [[image:image-20230805144936-2.png||height="113" width="746"]]
488
489 **Uplink:**
490
491 43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
492
493
494 **Parsed Value:**
495
496 [DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
497
498
499 [360,176,30,High,True,2023-08-04 02:53:00],
500
501 [355,168,30,Low,False,2023-08-04 02:53:29],
502
503 [245,211,30,Low,False,2023-08-04 02:54:29],
504
505 [57,700,30,Low,False,2023-08-04 02:55:29],
506
507 [361,164,30,Low,True,2023-08-04 02:56:00],
508
509 [337,184,30,Low,False,2023-08-04 02:56:40],
510
511 [20,4458,30,Low,False,2023-08-04 02:57:40],
512
513 [362,173,30,Low,False,2023-08-04 02:58:53],
514
515
516 History read from serial port:
517
518 [[image:image-20230805145056-3.png]]
519
520
521 === 2.3.4 Decode payload in The Things Network ===
522
523
524 While using TTN network, you can add the payload format to decode the payload.
525
526 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
527
528
529 (((
530 The payload decoder function for TTN is here:
531 )))
532
533 (((
534 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
535 )))
536
537
538 == 2.4 ​Show Data in DataCake IoT Server ==
539
540
541 (((
542 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
543 )))
544
545
546 (((
547 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
548 )))
549
550 (((
551 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
552 )))
553
554
555 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
556
557
558 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
559
560
561 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
562
563 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
564
565 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
566
567
568 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
569
570 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
571
572
573 == 2.5 Datalog Feature ==
574
575
576 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
577
578
579 === 2.5.1 Ways to get datalog via LoRaWAN ===
580
581
582 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
583
584 * (((
585 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
586 )))
587 * (((
588 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
589 )))
590
591 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
592
593 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
594
595
596 === 2.5.2 Unix TimeStamp ===
597
598
599 LDS12-LB uses Unix TimeStamp format based on
600
601 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
602
603 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
604
605 Below is the converter example
606
607 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
608
609
610 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
611
612
613 === 2.5.3 Set Device Time ===
614
615
616 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
617
618 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
619
620 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
621
622
623 === 2.5.4 Poll sensor value ===
624
625
626 Users can poll sensor values based on timestamps. Below is the downlink command.
627
628 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
629 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
630 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
631 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
632
633 (((
634 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
635 )))
636
637 (((
638 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
639 )))
640
641 (((
642 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
643 )))
644
645 (((
646 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
647 )))
648
649
650 == 2.6 Frequency Plans ==
651
652
653 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
654
655 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
656
657
658 == 2.7 LiDAR ToF Measurement ==
659
660 === 2.7.1 Principle of Distance Measurement ===
661
662
663 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
664
665 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
666
667
668 === 2.7.2 Distance Measurement Characteristics ===
669
670
671 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
672
673 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
674
675
676 (((
677 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
678 )))
679
680 (((
681 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
682 )))
683
684 (((
685 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
686 )))
687
688
689 (((
690 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
691 )))
692
693 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
694
695 (((
696 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
697 )))
698
699 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
700
701 (((
702 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
703 )))
704
705
706 === 2.7.3 Notice of usage ===
707
708
709 Possible invalid /wrong reading for LiDAR ToF tech:
710
711 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
712 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
713 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
714 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
715
716 === 2.7.4  Reflectivity of different objects ===
717
718
719 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
720 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
721 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
722 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
723 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
724 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
725 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
726 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
727 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
728 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
729 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
730 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
731 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
732 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
733 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
734 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
735 |(% style="width:53px" %)15|(% style="width:229px" %)(((
736 Unpolished white metal surface
737 )))|(% style="width:93px" %)130%
738 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
739 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
740 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
741
742 = 3. Configure LDS12-LB =
743
744 == 3.1 Configure Methods ==
745
746
747 LDS12-LB supports below configure method:
748
749 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
750
751 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
752
753 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
754
755 == 3.2 General Commands ==
756
757
758 These commands are to configure:
759
760 * General system settings like: uplink interval.
761
762 * LoRaWAN protocol & radio related command.
763
764 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
765
766 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
767
768
769 == 3.3 Commands special design for LDS12-LB ==
770
771
772 These commands only valid for LDS12-LB, as below:
773
774
775 === 3.3.1 Set Transmit Interval Time ===
776
777
778 (((
779 Feature: Change LoRaWAN End Node Transmit Interval.
780 )))
781
782 (((
783 (% style="color:blue" %)**AT Command: AT+TDC**
784 )))
785
786 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
787 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
788 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
789 30000
790 OK
791 the interval is 30000ms = 30s
792 )))
793 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
794 OK
795 Set transmit interval to 60000ms = 60 seconds
796 )))
797
798 (((
799 (% style="color:blue" %)**Downlink Command: 0x01**
800 )))
801
802 (((
803 Format: Command Code (0x01) followed by 3 bytes time value.
804 )))
805
806 (((
807 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
808 )))
809
810 * (((
811 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
812 )))
813 * (((
814 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
815
816
817
818 )))
819
820 === 3.3.2 Set Interrupt Mode ===
821
822
823 Feature, Set Interrupt mode for PA8 of pin.
824
825 When AT+INTMOD=0 is set, PA8 is used as a digital input port.
826
827 (% style="color:blue" %)**AT Command: AT+INTMOD**
828
829 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
830 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
831 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
832 0
833 OK
834 the mode is 0 =Disable Interrupt
835 )))
836 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
837 Set Transmit Interval
838 0. (Disable Interrupt),
839 ~1. (Trigger by rising and falling edge)
840 2. (Trigger by falling edge)
841 3. (Trigger by rising edge)
842 )))|(% style="width:157px" %)OK
843
844 (% style="color:blue" %)**Downlink Command: 0x06**
845
846 Format: Command Code (0x06) followed by 3 bytes.
847
848 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
849
850 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
851
852 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
853
854 === 3.3.3  Set Power Output Duration ===
855
856 Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
857
858 ~1. first enable the power output to external sensor,
859
860 2. keep it on as per duration, read sensor value and construct uplink payload
861
862 3. final, close the power output.
863
864 (% style="color:blue" %)**AT Command: AT+3V3T**
865
866 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
867 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
868 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
869 OK
870 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
871 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
872 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
873
874 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
875 Format: Command Code (0x07) followed by 3 bytes.
876
877 The first byte is 01,the second and third bytes are the time to turn on.
878
879 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
880 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
881 * Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
882
883 = 4. Battery & Power Consumption =
884
885
886 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
887
888 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
889
890
891 = 5. OTA Firmware update =
892
893
894 (% class="wikigeneratedid" %)
895 User can change firmware LDS12-LB to:
896
897 * Change Frequency band/ region.
898
899 * Update with new features.
900
901 * Fix bugs.
902
903 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
904
905 Methods to Update Firmware:
906
907 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
908
909 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
910
911 = 6. FAQ =
912
913 == 6.1 What is the frequency plan for LDS12-LB? ==
914
915
916 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
917
918
919 = 7. Trouble Shooting =
920
921 == 7.1 AT Command input doesn't work ==
922
923
924 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
925
926
927 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
928
929
930 (((
931 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
932 )))
933
934 (((
935 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
936 )))
937
938
939 (((
940 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
941 )))
942
943 (((
944 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
945 )))
946
947
948 = 8. Order Info =
949
950
951 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
952
953 (% style="color:red" %)**XXX**(%%): **The default frequency band**
954
955 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
956
957 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
958
959 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
960
961 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
962
963 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
964
965 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
966
967 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
968
969 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
970
971 = 9. ​Packing Info =
972
973
974 (% style="color:#037691" %)**Package Includes**:
975
976 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
977
978 (% style="color:#037691" %)**Dimension and weight**:
979
980 * Device Size: cm
981
982 * Device Weight: g
983
984 * Package Size / pcs : cm
985
986 * Weight / pcs : g
987
988 = 10. Support =
989
990
991 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
992
993 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].