Version 102.1 by Saxer Lin on 2023/08/05 15:54

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230614153353-1.png]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19 = 1. Introduction =
20
21 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==
22
23
24 The Dragino LDS12-LB is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
25
26 The LDS12-LB can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
27
28 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
29
30 The LoRa wireless technology used in LDS12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31
32 LDS12-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
33
34 LDS12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35
36 Each LDS12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37
38 [[image:image-20230615152941-1.png||height="459" width="800"]]
39
40
41 == 1.2 ​Features ==
42
43
44 * LoRaWAN 1.0.3 Class A
45 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
46 * Ultra-low power consumption
47 * Laser technology for distance detection
48 * Measure Distance: 0.1m~~12m @ 90% Reflectivity
49 * Accuracy :  ±5cm@(0.1-6m), ±1%@(6m-12m)
50 * Monitor Battery Level
51 * Support Bluetooth v5.1 and LoRaWAN remote configure
52 * Support wireless OTA update firmware
53 * AT Commands to change parameters
54 * Downlink to change configure
55 * 8500mAh Battery for long term use
56
57 == 1.3 Specification ==
58
59
60 (% style="color:#037691" %)**Common DC Characteristics:**
61
62 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
63 * Operating Temperature: -40 ~~ 85°C
64
65 (% style="color:#037691" %)**Probe Specification:**
66
67 * Storage temperature:-20℃~~75℃
68 * Operating temperature : -20℃~~60℃
69 * Measure Distance:
70 ** 0.1m ~~ 12m @ 90% Reflectivity
71 ** 0.1m ~~ 4m @ 10% Reflectivity
72 * Accuracy : ±5cm@(0.1-6m), ±1%@(6m-12m)
73 * Distance resolution : 5mm
74 * Ambient light immunity : 70klux
75 * Enclosure rating : IP65
76 * Light source : LED
77 * Central wavelength : 850nm
78 * FOV : 3.6°
79 * Material of enclosure : ABS+PC
80 * Wire length : 25cm
81
82 (% style="color:#037691" %)**LoRa Spec:**
83
84 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
85 * Max +22 dBm constant RF output vs.
86 * RX sensitivity: down to -139 dBm.
87 * Excellent blocking immunity
88
89 (% style="color:#037691" %)**Battery:**
90
91 * Li/SOCI2 un-chargeable battery
92 * Capacity: 8500mAh
93 * Self-Discharge: <1% / Year @ 25°C
94 * Max continuously current: 130mA
95 * Max boost current: 2A, 1 second
96
97 (% style="color:#037691" %)**Power Consumption**
98
99 * Sleep Mode: 5uA @ 3.3v
100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101
102 == 1.4 Applications ==
103
104
105 * Horizontal distance measurement
106 * Parking management system
107 * Object proximity and presence detection
108 * Intelligent trash can management system
109 * Robot obstacle avoidance
110 * Automatic control
111 * Sewer
112
113 (% style="display:none" %)
114
115 == 1.5 Sleep mode and working mode ==
116
117
118 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
119
120 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
121
122
123 == 1.6 Button & LEDs ==
124
125
126 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
127
128
129 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
130 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
131 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
132 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
133 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
134 )))
135 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
136 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
137 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
138 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
139 )))
140 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
141
142 == 1.7 BLE connection ==
143
144
145 LDS12-LB support BLE remote configure.
146
147 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
148
149 * Press button to send an uplink
150 * Press button to active device.
151 * Device Power on or reset.
152
153 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
154
155
156 == 1.8 Pin Definitions ==
157
158
159 [[image:image-20230805144259-1.png||height="413" width="741"]]
160
161 == 1.9 Mechanical ==
162
163
164 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
165
166
167 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
168
169
170 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
171
172
173 (% style="color:blue" %)**Probe Mechanical:**
174
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654827224480-952.png?rev=1.1||alt="1654827224480-952.png"]]
177
178
179 = 2. Configure LDS12-LB to connect to LoRaWAN network =
180
181 == 2.1 How it works ==
182
183
184 The LDS12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the LDS12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
185
186 (% style="display:none" %) (%%)
187
188 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
189
190
191 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
192
193 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
194
195 [[image:image-20230615153004-2.png||height="459" width="800"]](% style="display:none" %)
196
197
198 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from LDS12-LB.
199
200 Each LDS12-LB is shipped with a sticker with the default device EUI as below:
201
202 [[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
203
204
205 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
206
207
208 (% style="color:blue" %)**Register the device**
209
210 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
211
212
213 (% style="color:blue" %)**Add APP EUI and DEV EUI**
214
215 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
216
217
218 (% style="color:blue" %)**Add APP EUI in the application**
219
220
221 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
222
223
224 (% style="color:blue" %)**Add APP KEY**
225
226 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
227
228
229 (% style="color:blue" %)**Step 2:**(%%) Activate on LDS12-LB
230
231
232 Press the button for 5 seconds to activate the LDS12-LB.
233
234 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
235
236 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
237
238
239 == 2.3 ​Uplink Payload ==
240
241 === 2.3.1 Device Status, FPORT~=5 ===
242
243
244 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. LDS12-LB will uplink a payload via FPort=5 to server.
245
246 The Payload format is as below.
247
248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
249 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
250 **Size(bytes)**
251 )))|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**1**|=(% style="width: 100px; background-color: #4F81BD;color:white;" %)**2**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 50px;" %)**2**
252 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
253
254 Example parse in TTNv3
255
256 [[image:image-20230805103904-1.png||height="131" width="711"]]
257
258 (% style="color:blue" %)**Sensor Model**(%%): For LDS12-LB, this value is 0x24
259
260 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
261
262 (% style="color:blue" %)**Frequency Band**:
263
264 0x01: EU868
265
266 0x02: US915
267
268 0x03: IN865
269
270 0x04: AU915
271
272 0x05: KZ865
273
274 0x06: RU864
275
276 0x07: AS923
277
278 0x08: AS923-1
279
280 0x09: AS923-2
281
282 0x0a: AS923-3
283
284 0x0b: CN470
285
286 0x0c: EU433
287
288 0x0d: KR920
289
290 0x0e: MA869
291
292 (% style="color:blue" %)**Sub-Band**:
293
294 AU915 and US915:value 0x00 ~~ 0x08
295
296 CN470: value 0x0B ~~ 0x0C
297
298 Other Bands: Always 0x00
299
300 (% style="color:blue" %)**Battery Info**:
301
302 Check the battery voltage.
303
304 Ex1: 0x0B45 = 2885mV
305
306 Ex2: 0x0B49 = 2889mV
307
308
309 === 2.3.2 Uplink Payload, FPORT~=2 ===
310
311
312 (((
313 LDS12-LB will send this uplink **after** Device Status once join the LoRaWAN network successfully. And LDS12-LB will:
314
315 periodically send this uplink every 20 minutes, this interval [[can be changed>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H3.3.1SetTransmitIntervalTime]].
316
317 Uplink Payload totals 11 bytes.
318 )))
319
320 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
321 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
322 **Size(bytes)**
323 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 80px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**|=(% style="background-color: #4F81BD;color:white; width: 70px;" %)**1**
324 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)[[BAT>>||anchor="HBatteryInfo"]]|(% style="width:62.5px" %)(((
325 [[Temperature DS18B20>>||anchor="HDS18B20Temperaturesensor"]]
326 )))|[[Distance>>||anchor="HDistance"]]|[[Distance signal strength>>||anchor="HDistancesignalstrength"]]|(% style="width:122px" %)(((
327 [[Interrupt flag & Interrupt_level>>||anchor="HInterruptPin26A0InterruptLevel"]]
328 )))|(% style="width:54px" %)[[LiDAR temp>>||anchor="HLiDARtemp"]]|(% style="width:96px" %)(((
329 [[Message Type>>||anchor="HMessageType"]]
330 )))
331
332 [[image:image-20230805104104-2.png||height="136" width="754"]]
333
334
335 ==== (% style="color:blue" %)**Battery Info**(%%) ====
336
337
338 Check the battery voltage for LDS12-LB.
339
340 Ex1: 0x0B45 = 2885mV
341
342 Ex2: 0x0B49 = 2889mV
343
344
345 ==== (% style="color:blue" %)**DS18B20 Temperature sensor**(%%) ====
346
347
348 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
349
350
351 **Example**:
352
353 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
354
355 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
356
357
358 ==== (% style="color:blue" %)**Distance**(%%) ====
359
360
361 Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
362
363
364 **Example**:
365
366 If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
367
368
369 ==== (% style="color:blue" %)**Distance signal strength**(%%) ====
370
371
372 Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
373
374
375 **Example**:
376
377 If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
378
379 Customers can judge whether they need to adjust the environment based on the signal strength.
380
381
382 ==== (% style="color:blue" %)**Interrupt Pin & Interrupt Level**(%%) ====
383
384
385 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up.
386
387 Note: The Internet Pin is a separate pin in the screw terminal. See GPIO_EXTI of [[pin mapping>>||anchor="H1.8PinDefinitions"]].
388
389 **Example:**
390
391 0x00: Normal uplink packet.
392
393 0x01: Interrupt Uplink Packet.
394
395
396 ==== (% style="color:blue" %)**LiDAR temp**(%%) ====
397
398
399 Characterize the internal temperature value of the sensor.
400
401 **Example: **
402 If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
403 If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
404
405
406 ==== (% style="color:blue" %)**Message Type**(%%) ====
407
408
409 (((
410 For a normal uplink payload, the message type is always 0x01.
411 )))
412
413 (((
414 Valid Message Type:
415 )))
416
417 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:499px" %)
418 |=(% style="width: 161px;background-color:#4F81BD;color:white" %)**Message Type Code**|=(% style="width: 164px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 174px;background-color:#4F81BD;color:white" %)**Payload**
419 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
420 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.ConfigureLDS12-LB"]]
421
422 [[image:image-20230805150315-4.png||height="233" width="723"]]
423
424
425 === 2.3.3 Historical measuring distance, FPORT~=3 ===
426
427 LDS12-LB stores sensor values and users can retrieve these history values via the [[downlink command>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H2.5.4Pollsensorvalue]].
428
429 The historical payload includes one or multiplies entries and every entry has the same payload as Real-Time water flow status.
430
431 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
432 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
433 **Size(bytes)**
434 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 88px;" %)**1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 85px;" %)4
435 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)Interrupt flag & Interrupt_level|(% style="width:62.5px" %)(((
436 Reserve(0xFF)
437 )))|Distance|Distance signal strength|(% style="width:88px" %)(((
438 LiDAR temp
439 )))|(% style="width:85px" %)Unix TimeStamp
440
441 **Interrupt flag & Interrupt level:**
442
443 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:501px" %)
444 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
445 **Size(bit)**
446 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**bit7**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**bit6**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**[bit5:bit2]**|=(% style="width: 91px; background-color: rgb(79, 129, 189); color: white;" %)**bit1**|=(% style="background-color: rgb(79, 129, 189); color: white; width: 88px;" %)**bit0**
447 |(% style="width:62.5px" %)Value|(% style="width:62.5px" %)No ACK message|(% style="width:62.5px" %)Poll Message Flag|Reserve|(% style="width:91px" %)Interrupt level|(% style="width:88px" %)(((
448 Interrupt flag
449 )))
450
451 * (((
452 Each data entry is 11 bytes and has the same structure as [[Uplink Payload>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS12-LB_LoRaWAN_LiDAR_ToF_Distance_Sensor_User_Manual/#H2.3.2UplinkPayload2CFPORT3D2]], to save airtime and battery, LDS12-LB will send max bytes according to the current DR and Frequency bands.
453 )))
454
455 For example, in the US915 band, the max payload for different DR is:
456
457 **a) DR0:** max is 11 bytes so one entry of data
458
459 **b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
460
461 **c) DR2:** total payload includes 11 entries of data
462
463 **d) DR3:** total payload includes 22 entries of data.
464
465 If LDS12-LB doesn't have any data in the polling time. It will uplink 11 bytes of 0
466
467
468 **Downlink:**
469
470 0x31 64 CC 68 0C 64 CC 69 74 05
471
472 [[image:image-20230805144936-2.png||height="113" width="746"]]
473
474 **Uplink:**
475
476 43 FF 0E 10 00 B0 1E 64 CC 68 0C 40 FF 0D DE 00 A8 1E 64 CC 68 29 40 FF 09 92 00 D3 1E 64 CC 68 65 40 FF 02 3A 02 BC 1E 64 CC 68 A1 41 FF 0E 1A 00 A4 1E 64 CC 68 C0 40 FF 0D 2A 00 B8 1E 64 CC 68 E8 40 FF 00 C8 11 6A 1E 64 CC 69 24 40 FF 0E 24 00 AD 1E 64 CC 69 6D
477
478
479 **Parsed Value:**
480
481 [DISTANCE , DISTANCE_SIGNAL_STRENGTH,LIDAR_TEMP,EXTI_STATUS , EXTI_FLAG , TIME]
482
483
484 [360,176,30,High,True,2023-08-04 02:53:00],
485
486 [355,168,30,Low,False,2023-08-04 02:53:29],
487
488 [245,211,30,Low,False,2023-08-04 02:54:29],
489
490 [57,700,30,Low,False,2023-08-04 02:55:29],
491
492 [361,164,30,Low,True,2023-08-04 02:56:00],
493
494 [337,184,30,Low,False,2023-08-04 02:56:40],
495
496 [20,4458,30,Low,False,2023-08-04 02:57:40],
497
498 [362,173,30,Low,False,2023-08-04 02:58:53],
499
500
501 History read from serial port:
502
503 [[image:image-20230805145056-3.png]]
504
505
506 === 2.3.4 Decode payload in The Things Network ===
507
508
509 While using TTN network, you can add the payload format to decode the payload.
510
511 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654592762713-715.png?rev=1.1||alt="1654592762713-715.png"]]
512
513
514 (((
515 The payload decoder function for TTN is here:
516 )))
517
518 (((
519 LDS12-LB TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
520 )))
521
522
523 == 2.4 ​Show Data in DataCake IoT Server ==
524
525
526 (((
527 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
528 )))
529
530
531 (((
532 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
533 )))
534
535 (((
536 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
537 )))
538
539
540 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592790040-760.png?rev=1.1||alt="1654592790040-760.png"]]
541
542
543 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654592800389-571.png?rev=1.1||alt="1654592800389-571.png"]]
544
545
546 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
547
548 (% style="color:blue" %)**Step 4**(%%)**: Search the LDS12-LB and add DevEUI.**
549
550 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/1654851029373-510.png?rev=1.1||alt="1654851029373-510.png"]]
551
552
553 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
554
555 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20220610165129-11.png?width=1088&height=595&rev=1.1||alt="image-20220610165129-11.png"]]
556
557
558 == 2.5 Datalog Feature ==
559
560
561 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LDS12-LB will store the reading for future retrieving purposes.
562
563
564 === 2.5.1 Ways to get datalog via LoRaWAN ===
565
566
567 Set PNACKMD=1, LDS12-LB will wait for ACK for every uplink, when there is no LoRaWAN network,LDS12-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
568
569 * (((
570 a) LDS12-LB will do an ACK check for data records sending to make sure every data arrive server.
571 )))
572 * (((
573 b) LDS12-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but LDS12-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LDS12-LB gets a ACK, LDS12-LB will consider there is a network connection and resend all NONE-ACK messages.
574 )))
575
576 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
577
578 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
579
580
581 === 2.5.2 Unix TimeStamp ===
582
583
584 LDS12-LB uses Unix TimeStamp format based on
585
586 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
587
588 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
589
590 Below is the converter example
591
592 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
593
594
595 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
596
597
598 === 2.5.3 Set Device Time ===
599
600
601 User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
602
603 Once LDS12-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LDS12-LB. If LDS12-LB fails to get the time from the server, LDS12-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
604
605 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
606
607
608 === 2.5.4 Poll sensor value ===
609
610
611 Users can poll sensor values based on timestamps. Below is the downlink command.
612
613 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:425.818px" %)
614 |(% colspan="4" style="background-color:#4f81bd; color:white; width:423px" %)**Downlink Command to poll Open/Close status (0x31)**
615 |(% style="width:58px" %)**1byte**|(% style="width:127px" %)**4bytes**|(% style="width:124px" %)**4bytes**|(% style="width:114px" %)**1byte**
616 |(% style="width:58px" %)31|(% style="width:127px" %)Timestamp start|(% style="width:124px" %)Timestamp end|(% style="width:114px" %)Uplink Interval
617
618 (((
619 Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
620 )))
621
622 (((
623 For example, downlink command [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
624 )))
625
626 (((
627 Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
628 )))
629
630 (((
631 Uplink Internal =5s,means LDS12-LB will send one packet every 5s. range 5~~255s.
632 )))
633
634
635 == 2.6 Frequency Plans ==
636
637
638 The LDS12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
639
640 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
641
642
643 == 2.7 LiDAR ToF Measurement ==
644
645 === 2.7.1 Principle of Distance Measurement ===
646
647
648 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
649
650 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831757579-263.png?rev=1.1||alt="1654831757579-263.png"]]
651
652
653 === 2.7.2 Distance Measurement Characteristics ===
654
655
656 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
657
658 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831774373-275.png?rev=1.1||alt="1654831774373-275.png"]]
659
660
661 (((
662 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
663 )))
664
665 (((
666 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
667 )))
668
669 (((
670 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
671 )))
672
673
674 (((
675 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
676 )))
677
678 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831797521-720.png?rev=1.1||alt="1654831797521-720.png"]]
679
680 (((
681 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
682 )))
683
684 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LLDS12-LoRaWAN%20LiDAR%20ToF%20Distance%20Sensor%20User%20Manual/WebHome/1654831810009-716.png?rev=1.1||alt="1654831810009-716.png"]]
685
686 (((
687 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
688 )))
689
690
691 === 2.7.3 Notice of usage ===
692
693
694 Possible invalid /wrong reading for LiDAR ToF tech:
695
696 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
697 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might be wrong.
698 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
699 * The sensor window is made by Acrylic. Don't touch it with alcohol material. This will destroy the sensor window.
700
701 === 2.7.4  Reflectivity of different objects ===
702
703
704 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:379px" %)
705 |=(% style="width: 54px;background-color:#4F81BD;color:white" %)Item|=(% style="width: 231px;background-color:#4F81BD;color:white" %)Material|=(% style="width: 94px;background-color:#4F81BD;color:white" %)Relectivity
706 |(% style="width:53px" %)1|(% style="width:229px" %)Black foam rubber|(% style="width:93px" %)2.4%
707 |(% style="width:53px" %)2|(% style="width:229px" %)Black fabric|(% style="width:93px" %)3%
708 |(% style="width:53px" %)3|(% style="width:229px" %)Black rubber|(% style="width:93px" %)4%
709 |(% style="width:53px" %)4|(% style="width:229px" %)Coal (different types of coal)|(% style="width:93px" %)4~~8%
710 |(% style="width:53px" %)5|(% style="width:229px" %)Black car paint|(% style="width:93px" %)5%
711 |(% style="width:53px" %)6|(% style="width:229px" %)Black Jam|(% style="width:93px" %)10%
712 |(% style="width:53px" %)7|(% style="width:229px" %)Opaque black plastic|(% style="width:93px" %)14%
713 |(% style="width:53px" %)8|(% style="width:229px" %)Clean rough board|(% style="width:93px" %)20%
714 |(% style="width:53px" %)9|(% style="width:229px" %)Translucent plastic bottle|(% style="width:93px" %)62%
715 |(% style="width:53px" %)10|(% style="width:229px" %)Carton cardboard|(% style="width:93px" %)68%
716 |(% style="width:53px" %)11|(% style="width:229px" %)Clean pine|(% style="width:93px" %)70%
717 |(% style="width:53px" %)12|(% style="width:229px" %)Opaque white plastic|(% style="width:93px" %)87%
718 |(% style="width:53px" %)13|(% style="width:229px" %)White Jam|(% style="width:93px" %)90%
719 |(% style="width:53px" %)14|(% style="width:229px" %)Kodak Standard Whiteboard|(% style="width:93px" %)100%
720 |(% style="width:53px" %)15|(% style="width:229px" %)(((
721 Unpolished white metal surface
722 )))|(% style="width:93px" %)130%
723 |(% style="width:53px" %)16|(% style="width:229px" %)Glossy light metal surface|(% style="width:93px" %)150%
724 |(% style="width:53px" %)17|(% style="width:229px" %)stainless steel|(% style="width:93px" %)200%
725 |(% style="width:53px" %)18|(% style="width:229px" %)Reflector plate, reflective tape|(% style="width:93px" %)>300%
726
727 = 3. Configure LDS12-LB =
728
729 == 3.1 Configure Methods ==
730
731
732 LDS12-LB supports below configure method:
733
734 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
735
736 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
737
738 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
739
740 == 3.2 General Commands ==
741
742
743 These commands are to configure:
744
745 * General system settings like: uplink interval.
746
747 * LoRaWAN protocol & radio related command.
748
749 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
750
751 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
752
753
754 == 3.3 Commands special design for LDS12-LB ==
755
756
757 These commands only valid for LDS12-LB, as below:
758
759
760 === 3.3.1 Set Transmit Interval Time ===
761
762
763 (((
764 Feature: Change LoRaWAN End Node Transmit Interval.
765 )))
766
767 (((
768 (% style="color:blue" %)**AT Command: AT+TDC**
769 )))
770
771 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
772 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
773 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
774 30000
775 OK
776 the interval is 30000ms = 30s
777 )))
778 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
779 OK
780 Set transmit interval to 60000ms = 60 seconds
781 )))
782
783 (((
784 (% style="color:blue" %)**Downlink Command: 0x01**
785 )))
786
787 (((
788 Format: Command Code (0x01) followed by 3 bytes time value.
789 )))
790
791 (((
792 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
793 )))
794
795 * (((
796 Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
797 )))
798 * (((
799 Example 2: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds 
800
801
802
803 )))
804
805 === 3.3.2 Set Interrupt Mode ===
806
807
808 Feature, Set Interrupt mode for PA8 of pin.
809
810 When AT+INTMOD=0 is set, PA8 is used as a digital input port.
811
812 (% style="color:blue" %)**AT Command: AT+INTMOD**
813
814 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
815 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
816 |(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
817 0
818 OK
819 the mode is 0 =Disable Interrupt
820 )))
821 |(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
822 Set Transmit Interval
823 0. (Disable Interrupt),
824 ~1. (Trigger by rising and falling edge)
825 2. (Trigger by falling edge)
826 3. (Trigger by rising edge)
827 )))|(% style="width:157px" %)OK
828
829 (% style="color:blue" %)**Downlink Command: 0x06**
830
831 Format: Command Code (0x06) followed by 3 bytes.
832
833 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
834
835 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
836
837 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
838
839 === 3.3.3  Set Power Output Duration ===
840
841 Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will
842
843 ~1. first enable the power output to external sensor,
844
845 2. keep it on as per duration, read sensor value and construct uplink payload
846
847 3. final, close the power output.
848
849 (% style="color:blue" %)**AT Command: AT+3V3T**
850
851 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
852 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
853 |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default)
854 OK
855 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK
856 |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK
857 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK
858
859 (% style="color:blue" %)**Downlink Command: 0x07**(%%)
860 Format: Command Code (0x07) followed by 3 bytes.
861
862 The first byte is 01,the second and third bytes are the time to turn on.
863
864 * Example 1: Downlink Payload: 07 01 00 00  **~-~-->**  AT+3V3T=0
865 * Example 2: Downlink Payload: 07 01 01 F4  **~-~-->**  AT+3V3T=500
866 * Example 3: Downlink Payload: 07 01 FF FF  **~-~-->**  AT+3V3T=65535
867
868 = 4. Battery & Power Consumption =
869
870
871 LDS12-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
872
873 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
874
875
876 = 5. OTA Firmware update =
877
878
879 (% class="wikigeneratedid" %)
880 User can change firmware LDS12-LB to:
881
882 * Change Frequency band/ region.
883
884 * Update with new features.
885
886 * Fix bugs.
887
888 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/w1p7ukjrx49e62r/AAB3uCNCt-koYUvMkZUPBRSca?dl=0]]**
889
890 Methods to Update Firmware:
891
892 * (Recommanded way) OTA firmware update via wireless:  **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
893
894 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
895
896 = 6. FAQ =
897
898 == 6.1 What is the frequency plan for LDS12-LB? ==
899
900
901 LDS12-LB use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
902
903
904 = 7. Trouble Shooting =
905
906 == 7.1 AT Command input doesn't work ==
907
908
909 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:blue" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:blue" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
910
911
912 == 7.2 Significant error between the output distant value of LiDAR and actual distance ==
913
914
915 (((
916 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance. (such as glass and water, etc.)
917 )))
918
919 (((
920 (% style="color:red" %)**Troubleshooting**(%%): Please avoid use of this product under such circumstance in practice.
921 )))
922
923
924 (((
925 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
926 )))
927
928 (((
929 (% style="color:red" %)**Troubleshooting**(%%): please use dry dust-free cloth to gently remove the foreign matter.
930 )))
931
932
933 = 8. Order Info =
934
935
936 Part Number: (% style="color:blue" %)**LDS12-LB-XXX**
937
938 (% style="color:red" %)**XXX**(%%): **The default frequency band**
939
940 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
941
942 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
943
944 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
945
946 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
947
948 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
949
950 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
951
952 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
953
954 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
955
956 = 9. ​Packing Info =
957
958
959 (% style="color:#037691" %)**Package Includes**:
960
961 * LDS12-LB LoRaWAN LiDAR ToF Distance Sensor x 1
962
963 (% style="color:#037691" %)**Dimension and weight**:
964
965 * Device Size: cm
966
967 * Device Weight: g
968
969 * Package Size / pcs : cm
970
971 * Weight / pcs : g
972
973 = 10. Support =
974
975
976 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
977
978 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].